Dynamics of harpoon-assisted capturing of space debris

Theoretical mechanics


Аuthors

Aslanov V. S.*, Sizov D. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: aslanov_vs@mail.ru
**e-mail: sizov.syzran@gmail.com

Abstract

This study focuses on the problem of space debris capturing with harpoon. In contrast to the existing works on this issue, the paper deals with the process dynamics and accounts for the space debris motion disturbances caused by the harpoon. The objective of the article consists in analyzing the behavior of the system consisting of space debris in orbit and a damper equipped harpoon while capturing process and after it. The paper proposes two mathematical models of capturing. The first model studies three stages of the process, namely perforation, damping, and the target motion after the harpoon fixing in it. The interacting force between the target and harpoon is considered as a time function, which parameters depend on the harpoon properties. The second simplified model is based on a hypothesis that the target and harpoon interaction is absolutely inelastic collision. Both models are applied to simulate of a lightweight target capturing, and the simplified model’s restrictions are demonstrated. A large space debris capturing is also being studied. Numerical simulation reveals that the large rotating object after its capturing either continues its rotation in the initial or in the opposite direction, or starts wavering. The article formulated the conditions for the body transition from rotation to wavering after being captured by the harpoon. The results of this work may be employed for the space debris removal systems developing.

Keywords:

space debris, capturing, removal, harpoon, perforation

References

  1. Schaub H., Jasper L.E., Anderson P.V., McKnight D S. Cost and risk assessment for spacecraft operation decisions caused by the space debris environment, Acta Astronautica, 2015, vol. 113, pp. 66 – 79.

  2. Shan M., Guo J., Gill E. Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, 2016, vol. 80, pp. 18 – 32.

  3. Ashurbeili I.R., Lagovier A.I., Ignatiev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 42, available at: http://trudymai.ru/eng/published.php?ID=24856

  4. Avdeev A.V., Metelnikov A.A. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=72840

  5. Botta E. M., Sharf I., Misra A.K., Teichmann M. On the simulation of tether-nets for space debris capture with Vortex Dynamics, Acta Astronautica, 2016, vol. 123, pp. 91 – 102.

  6. Nishida S.I., Kawamoto S., Okawa Y., Terui F., Kitamura S. Space debris removal system using a small satellite, Acta Astronautica, 2009, vol. 65, no. 1-2, pp. 95 – 102.

  7. Reed J., Barraclough S. Development of harpoon system for capturing space debris, ESA Special Publication, 2013, vol. 723, pp. 8.

  8. Dudziak R., Tuttle S., Barraclough S. Harpoon technology development for the active removal of space debris, Advances in Space Research, 2015, vol. 56, no. 3, pp. 509 – 527.

  9. Aslanov V.S., Alekseev A. V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644

  10. Forshaw J.L. et al. Final payload test results for the Remove Debris active debris removal mission, Acta Astronautica, 2017, vol. 138, pp. 326 – 342.

  11. Kawamoto S., Matsumoto K., Wakabayashi S. Ground experiment of mechanical impulse method for uncontrollable satellite capturing, Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS), Montreal, Canada, 2001, pp. 8.

  12. Bennett T., Schaub H. Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris, The Journal of the Astronautical Sciences, 2015, vol. 62, no. 3, pp. 233 – 253.

  13. Gómez N.O., Walker S. J.I. Guidance, navigation, and control for the eddy brake method, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 1, pp. 52 – 68.

  14. Yudintsev V., Aslanov V. Detumbling space debris using modified yo-yo mechanism, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 3, pp. 714 – 721.

  15. Børvik T., Langseth M., Hopperstad O.S., Malo K.A. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part II: numerical simulations, International Journal of Impact Engineering, 2002, vol. 27, no. 1, pp. 37 – 64.

  16. Rusinek A., Rodríguez-Martínez J.A., Zaera R., Klepaczko J.R., Arias A., Sauvelet C. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles, International Journal of Impact Engineering, 2009, vol. 36, no. 4, pp. 565 – 587.

  17. Antoinat L., Kubler R., Barou J.L., Viot P., Barrallier L. Perforation of aluminium alloy thin plates, International Journal of Impact Engineering, 2015, no. 75, pp. 255 – 267.

  18. Golsdmith W., Finnegan S.A. Penetration and perforation processes in metal targets at and above ballistic velocities, International Journal of Mechanical Sciences, 1971, vol. 13, no. 10, pp. 843 – 866.

  19. Goldsmith W. Non-ideal projectile impact on targets, International Journal of Impact Engineering, 1999, vol. 22, no. 2-3, pp. 95 – 395.

  20. Virostek S.P., Dual J., Goldsmith W. Direct force measurement in normal and oblique impact of plates by projectiles, International Journal of Impact Engineering, 1987, vol. 6, no. 4, pp. 247 – 269.

  21. Wierzbicki T., Abramowicz W. On the crushing mechanics of thin-walled structures, Journal of Applied mechanics, 1983, vol. 50, no. 4, pp. 727 – 734.

  22. Zarei H., Kröger M. Optimum honeycomb filled crash absorber design, Materials & Design, 2008, vol. 29, no 1, pp. 193 – 204.

  23. Santosa S., Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam, Computers & Structures, 1998, vol. 68, no. 4, pp. 343 – 367.

  24. Beletskii V.V. Dvizhenie sputnika otnositel’no tsentra mass v gravitatsionnom pole (Motion of a Satellite about its Center of Mass in the Gravitational Field), Moscow, Izd–vo MAI, 1975, 308 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход