Laser ignition of oxygen-methane fuel in a combustion chamber

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Rebrov S. G.1*, Golubev V. A.1**, Lozino-Lozinskaya I. G.2***, Pozvonkov D. M.2****

1. State Scientific Center of the Russian Federation “Keldysh Research Center”, Moscow, Russia
2. Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: rebrov_sergey@mail.ru
**e-mail: golubev.va@mail.ru
***e-mail: izol39@mail.ru
****e-mail: space_ace@list.ru

Abstract

The article presents the results of the studies on the main regularities of laser ignition of an oxygen-methane gaseous fuel in a combustion chamber. A small-sized laser was installed directly on the mixing head with radiation leading-in along the axis of the chamber. The ignition was performed by initiating a spark of optical breakdown while radiation focusing in the fuel mixture volume. Mixture formation in the combustion chamber was provided by six coaxial-jet nozzles and typical for many modern liquid-fuel rocket engines operating on fuel components oxygen-hydrogen, oxygen-methane.

The studies of laser ignition specifics were performed in two directions. The first direction was determination of laser ignition possibility depending on the parameters of the fuel mixture. With this,the effect of feeding sequence of fuel components and characteristics of the mixture (pressure and flow rate) on the laser ignition possibility and ignition character were studied. The order of the components feeding was set by the control commands of the test bench. The output nozzles with various critical sections were employed for changing the flow velocity and pressure of the mixture components in the combustion chamber. The second direction of the research was studying the effect of the location of the initiation region of a spark of optical breakdown on the ignition reliability. For this purpose, lenses providing the laser radiation focusing at various distances from the mixing head plane were employed.

Final recommendations for both combustion chamber and laser ignition system characteristics selection, ensuring reliable ignition when radiation introduction into the chamber from the mixing head along the chamber axis, were given based on the results of the performed work and the obtained regularities.

Keywords:

laser ignition, combustion chamber, LPRE, oxygen-methane, axial input

References

  1. Rebrov S.G., Golubev V.A., Golikov A.N. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84458

  2. Rebrov S.G., Golikov A.N., Golubev V.A. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29491

  3. Rebrov S.G., Golubev V.A., Golikov A.N. Patent RU 2468240, 27.11.2012.

  4. Soller S., Rackemann N., Kroupa G.. Laser Ignition Application to Cryogenic Propellant Rocket Thrust Chambers, Laser ignition conference, 20 – 23 June 2017, Bucharest, Romania, available at: https://www.osapublishing.org/viewmedia.cfm?uri=LIC-2017-LFA4.3&seq=0

  5. Lacaze, G, Cuenot, B., Poinsot, T. and Oschwald, M. Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration, Combustion and Flame, 2009, no. 156, pp. 1166 – 1180.

  6. Manfletti C., Oschwald M., Sender J. Theoretical and Experimental Discourse on Laser Ignition in Liquid Rocket Engines, The 27th International Symposium on Space Technology and Science, 05 – 12 July 2009, Tsukuba, Japan, available at: https://elib.dlr.de/59666/1/manfletti-2009-ists.pdf

  7. Börner M. Laser ignition of a multi-injector liquid rocket engine, // Space Propulsion Conference 2014, SPC2014-2969567, 19th to 22nd Mai, 2014, Cologne, available at: https://www.eucass.eu/doi/EUCASS2017-049.pdf

  8. Klepikov I.A., Bakhmutov A. A., Bukanov V.T., Miroshkin V.V. et al. Trudy NPO Energomash im. akademika V.P. Glushko, 2000, no. 18, pp. 192 − 204.

  9. Klepikov I., Katorgin B., Chvanov V. The new generation of rocket engines, operating by ecologically safe propellant “liquid oxygen and liquefied natural gas(methane),” Acta Astronautica, 1997, no. 41(4), pp. 209 – 217.

  10. DeLong D., Greason J., Rodway-McKee K. Liquid Oxygen/Liquid Methane Rocket Engine Development, SAE 2007 AeroTech Congress and Exhibition, September 2007, Los Angeles, CA, available at: https://www.sae.org/publications/technical-papers/content/2007-01-3876/

  11. Grasl S., Nguyen C., Skaff A. Liquid Methane/ Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs – Preliminary Test Results, 5th JANNAF Liquid Propulsion Meeting, May 2010, Colorado Springs, CO. available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090004695.pdf

  12. Wohlhüter M., Zhukov V., Börner M. Methane/oxygen laser ignition in an experimental rocket combustion chamber: impact of mixing and ignition position, Space Propulsion Conference 2016, SPC2016-3124927 available at: https://elib.dlr.de/107776/1/MW_Paper_SP2016.pdf

  13. Börner M., Manfletti C., Hardi J., Suslov D., Kroupa G., Oschwald M. Laser ignition of a multi-injector LOX/methane combustor, The 31st International Symposium on Space Technology and Science, 03 – 09 June, 2017, Matsuyama, Japan. available at: https://link.springer.com/article/10.1007/s12567-018-0196-6

  14. Soller S. Rackemann N., Preuss N., Kroupa G. Application of Laser Ignition Systems in Liquid Rocket Engines, 3AF Space Propulsion 2016, Rome, available at: https://www.osapublishing.org/viewmedia.cfm?uri=LIC-2017-LFA4.3&seq=0

  15. Zlobin V.B. Reshetnevskie chteniya, 2017, no. 1 (21), pp. 206 – 207.

  16. Gurtovoi A.A., Lobov S.D., Rachuk V.S., Shostak A.V. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 1 (4), pp. 60 – 66.

  17. Gurtovoi A.A., Ivanov A.V. et al. Raschet i konstruirovanie agregatov ZhRD. Voronezh, Voronezhskii gosudarstvennyi tekhnicheskii universitet, 2016. available at: https://docplayer.ru/68244556-Raschyot-i-konstruirovanie-agregatov-zhrd.html

  18. Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34989

  19. Börner М., Deeken J.C., Manfletti C., Oschwald M. Determination of the minimum laser pulse energies for ignition in a subscale rocket combustion chamber. Laser ignition conference, 20 – 23 June 2017, Bucharest, Romania. available at: https://www.osapublishing.org/viewmedia.cfm?uri=LIC-2017-LThA4.2&seq=0

  20. Rebrov S.G., Golubev V.A. Izvestiya RAN. Energetika, 2015, no. 2, pp. 131 – 137.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход