The study of the OFDM signals with primary amplitude-phase amplitude-pulse modulation

Systems, networks and telecommunication devices


Аuthors

Kuznetsov V. S.1*, Volkov A. S.2**, Sokovikov S. A.1***

1. National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia
2. National Research University of Electronic Technology, Bld. 1, Shokin Square, Zelenograd, Moscow, Russia, 124498

*e-mail: vitaliy_kuznetsov@hotmail.com
**e-mail: leshvol@mail.ru
***e-mail: sokovikov.stepan@gmail.com

Abstract

Technology of transmission with multiple carrier frequencies in the form of multiplexing with orthogonal frequency division OFDM and methods on its basis are widely accepted as one of the most prospective access schemes for application in the communication systems under development.

A new effective method of quadrature discrete modulation with receiving in the continuous channel with additive Gauss noise, called AFM-APM (amplitude-phase modulation amplitude-pulse modulation) is proposed. Due to the quadrature modulation scheme at FM-16, 8 levels of FM amplitude and 8 levels of APM signal in quadrature, this modulation method ensures frequency efficiency in the output bandwidth of
γAFM-APM = 20 bit/s/Hz.

This modulation method allows realize 10 bit/count instead of 6 bit/count with the number of levels not more than with QAM-64.

The possibility of employing the suggested modulation as a method for subcarrier OFDM-signals was considered. The OFDM effectiveness is defined by the primary modulation effectiveness. With AFM-APM OFDM the 8 bit/count is realized, preserving the peak-factor at the QAM-16 level. Previously, no modulation technique allowed achieve such results. The probability of bit error to the Ebit/N0 ratio was modeled. It was demonstrated that more energy consumption was required for the AFM-APM realization. But, since AFM-APM employs cascaded modulation technique, its application in OFDM becomes possible. It is necessary to transfer to cascaded modulation implementation, which allows realizing the high efficiency with simple complexity. Each cascade realizes a part of the volume. The first cascade is FM-16 demodulator, the second is the quadrature modulation of a 4 ´ 4 system with quantization along the co-phase axis.

To compare AFM-APM with the other modulation techniques it is necessary to compare with those techniques, which ensure the same volume of data transmitted per the specified count. Since the AFM-APM provides 8 bit/count it should be compared to QAM-256. By the the modeling results asymptotic advantage of QAM-256 is about 7dB, though its realization in OFDM is impossible.

When comparing with the channel with the same frequency effectiveness and error probability qbit = 10-7, the Gauss channel requires 36 dB, which is 5 dB more than with AFM-APM.

Keywords:

quadrature amplitude modulation, PSK, PAM, amplitude phase shift keying, spectral efficiency, orthogonal frequency-division multiplexing, signal constellation, discrete modulation

References

  1. Addabbo, P. et al. A Review of Spectrally Efficient Modulations for Earth Observation Data Downlink, Proceedings of the Metrology for Aerospace Conference, 2014 IEEE, MetroAeroSpace 2014, pp. 428 – 432.

  2. Jordanova L., Laskov L., Dobrev D. Constellation and Mapping Optimization of APSK Modulations used in DVB-S2, Engineering, Technology & Applied Science Research, 2014, vol. 4, no. 5, pp. 690 – 695.

  3. Afelumo O., Awoseyila A., Evans B. Simplified evaluation of APSK error performance, Electronics Letters, 2012, vol. 48, no. 14, pp. 886 – 888.

  4. Manimegalai C.T., Kumar R. Performance of LDPC- Coded APSK-Modulation for Wireless USB, Wseas Transactions on Communications, 2013, vol. 12, no. 12, pp. 661 – 669.

  5. Zaishuang Liu, QiuliangXie, KewuPeng, Zhixing Yang. APSK Constellation with Gray Mapping: A genetic algorithm approach, IEEE communications letters, 2011, vol. 15, no. 12, pp. 1 – 6.

  6. Solodkov, A., Voronov, E., Semenova, A. 11 Bit/s/Hz Spectral Efficiency Modulation Scheme for High-speed Data Links, Proceedings of the Sixth International Conference (ITA15), 8-11 September 2015, Wrexham, North Wales, UK, pp. 155 – 159.

  7. Bakhtin A.A., Omel’yanchuk E.V., Semenova A.Yu. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85828

  8. Bakhtin A.A., Belousov E.O., Lomovskaya K.M., Timoshenko A.G. Izvestiya vysshikh uchebnykh zavedenii. Elektronika, 2015, no. 5, pp. 74 – 81.

  9. Kuznetsov V.S., Solodkov A.V., Muratchaev S.S. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Elektronika – 2015”. Tezisy dokladov, (Moscow, Nov. 2015), Moscow, MIET, 2015, pp. 109.

  10. H. Schulze and C. Lueders. Theory and Applications of OFDM and CDMA Wideband Wireless Communications, John Wiley, 2005, 421 p.

  11. Kuznetsov V.S., Solodkov A.V. Estestvennye i tekhnicheskie nauki, 2017, no. 3 (105), pp. 114 – 117.

  12. Kuznetsov V.S., Kuznetsov V.V. Nereshennye problemy v oblasti peredachi informatsii i svyazi (Unresolved problems in the area of information and communication), Moscow, Goryachaya liniya-Telekom, 2016, 60 p.

  13. IEEE Standard for Information technology–Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), 2012.

  14. Ghorpade S.S., Sankpal S.V. Behaviour of OFDM System using MATLAB Simulation, International Journal of Advanced Computer Research, 2013, vol. 3, issue 2, pp. 67 – 71.

  15. Linglong D., Wang Z., Yang Z. Time-Frequency Training OFDM with High Spectral Efficiency and Reliable Performance in High Speed Environments, IEEE Journal on Selected Areas in Communications, 2012, vol. 30, no. 4, pp. 695 – 707.

  16. Koffman I., Roman V. Broadband wireless access solutions based on OFDM access in IEEE 802.16, IEEE Communications Magazine, 2002, vol. 40, pp. 96 – 103.

  17. Wang X., Li H., Lin H. A new adaptive OFDM system with preceded cyclic prefix for dynamic cognitive radio communications, IEEE Journal on Selected Areas in Communications, 2011, vol. 29, no. 2, pp. 431 – 442.

  18. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81, available at: http://trudymai.ru/eng/published.php?ID=57894

  19. Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2010, no. 40, available at: http://trudymai.ru/eng/published.php?ID=22874

  20. Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2015, no. 84, available at: http://trudymai.ru/eng/published.php?ID=63136


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход