Multi-channel detector's analysis results application for evaluation of a rank demodulator noise immunity

Methods and systems of information protection, information security


Аuthors

Beltyukov S. V.1*, Philatov V. I.2**, Borukaeva A. O.2***, Berdikov P. G.2****

1. Military Academy of Strategic Missile Forses named after Petr Veliky, 9/5, Kitaygorodsky Proezd, Moscow, 109074, Russia
2. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: Stm99@mail.ru
**e-mail: vfil10@mail.ru
***e-mail: alexbmstu.b@yandex.ru
****e-mail: palber96@gmail.com

Abstract

Characteristics of multi-channel detectors were studied to solve the problem of the valid signal detecting on the background noise. The proposed employing a rank demodulator for ensuring high noise immunity of communication channels. The results of multi-channel detector’s analysis were used to evaluate this characteristic. The conclusion is being made on the preferential use of the rank demodulator based on the study of the dependence of an error equivalent probability per information bit from the signal/noise ratio. A scheme for its application realizing reciprocal ranks computing is proposed. The article presents design equations for the error probability, probability of a summed rank presence it the signal channel and mutual probability of noise ranks with account for envelope distribution for the case of common ranking of an array consisted of kM counts of the envelope. The dependencies of error probability per bit of information for the rank modulator are also presented. A conclusion is being made that the rank modulator with a total ranking throughout the array of samples has the best noise immunity.

Keywords:

signal, noise immunity, rank demodulator, multi-channel detector, signal/noise ratio, error probability, envelope

References

  1. Borisov V.I., Zinchuk V.M., Limarev A.E. et al. Pomekhozashchishchennost’ sistem radiosvyazi s rasshireniem spektra signalov modulyatsiei nesushchei psevdosluchainoi posledovatel’nost’yu (Noise immunity of radio communication systems with spectrum spreading of signals by modulation of carrier pseudo-random sequence), Moscow, Radio i svyaz’, 2003, 640 p.

  2. Solonina A.I., Ulakhovich D.A. Lineinye diskretnye sistemy (Linear discrete systems), Sankt-Peterburg, Sankt-Peterburg Gosudarstvennyi universitet telekommunikatsii, 2005, 75 p.

  3. Pestryakov V.B., Afanas’ev V.P., Gurvits V.I. et al. Shumopodobnye signaly v sistemakh peredachi informatsii (Noise-like signals in communication systems), Moscow, Sovetskoe radio, 1973, 424 p.

  4. Tuzov G.I., Kozlov M.R. Zarubezhnaya radioelektronika, 1983, no. 3, pp. 19 – 32.

  5. Baulin P.Z., Kobelev M.A., Kupriyanov A.I. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2015, vol. 2, no. 1, pp. 42 – 46.

  6. Mutter V.M. Osnovy pomekhoustoichivoi teleperedachi informatsii (Fundamentals of jam-resistant information video transmission), Leningrad, Energoatomizdat, 1990, 288 p.

  7. Samoilenko V.I. Grubrin I.V. Izvestiya VUZov. Radioelektronika, 1988, no. 4, pp. 64 – 68.

  8. Kuznetsov A.B., Popov V.D., Shavin A.S., Ivanov A.A. Patent RF № 2553068, 15.05.2015.

  9. Batalov L.V., Zhukovskii M.I., Kirichek R.V., Lazarev B.N. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2012, no. 2 (78), pp. 103 − 108.

  10. Banket V.L., Lyakhov A.I. Zarubezhnaya radioelektronika, 1981, no. 8, pp. 3 – 23.

  11. Okunev Yu.B. Tsifrovaya peredacha informatsii fazomodulirovannymi signalami (Digital transmission of information by phase-modulated signals), Moscow, Radio i svyaz’, 1991, 296 p.

  12. Penin P.I. Sistemy peredachi tsifrovoi informatsii (Transmitting systems of digital information), Moscow, Sovetskoe Radio, 1976, 364 p.

  13. Varakin L.E. Sistemy svyazi s shumopodobnymi signalami (Communication systems with noise-type signals), Moscow, Radio i svyaz’, 1985, 384 p.

  14. Tikhonov V.I., Kharisov V.N. Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i system (Statistical analysis and synthesis of radio engineering devices and systems), Moscow, Radio i svyaz’, 1991, 608 p.

  15. Sosulin Yu.G. Teoriya obnaruzheniya i otsenivaniya stokhasticheskikh signalov (Theory of stochastic signals detection and estimation), Moscow, Sovetskoe radio, 1978, 320 p.

  16. Petrakov O. Radio, 2003, no. 4, available at: http://www.radioway.ru/2003/04/modelirovanie_radiopriema_v_uslovijah_shumov_i_pomeh.html

  17. Bol’shov O.A., Kupriyanov A.I. Trudy MAI, 2001, no. 4, available at: http://trudymai.ru/eng/published.php?ID=34676

  18. Chikin A.V. Trudy MAI, 2003, no. 13, available at: http://trudymai.ru/eng/published.php?ID=34446

  19. Osipov N.A., Shavin A.S., Tarasov A.G. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=81085

  20. Bychenkov S., Mikhailov V., Sakaniwa K. Fast acquisition of PN sequences in DS/CDMA systems, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2002, vol. E85-A, no. 11, pp. 2498 – 2520.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход