Design procedure for heat dissipation of hybrid bearings with grease lubricant

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Khramin R. V.*, Kikot' N. V.**, Lebedev M. V.***, Burov M. N.****

United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia

*e-mail: roman.khramin@ues-saturn.ru
**e-mail: nikolay.kikot@ues-saturn.ru
***e-mail: maksim.lebedev@uec-saturn.ru
****e-mail: maxim.burov@ues-saturn.ru

Abstract

Grease-lubricated bearings application is a promising trend for weight reduction and reliability increase of small-size engines, which allows eliminate the oil system utilization. Since the lubricant grease working temperature is, as a rule, lower than the temperature of conventional aviation oils, accurate assessment of the bearing thermal state is required. To reduce heat generation within the bearings under study, ceramic rolling elements, rather than traditionally used steel bodies, are used. The bearing lifespan is determined by the loads and thermal state of the bearing elements and grease. To determine the bearing thermal state, we are to know the values of heat flows affecting the bearing. Heat flows from the surrounding parts and air can be sufficiently determined by the verified commercial software products. To determine the heat flow generated by the grease-lubricated bearings, it is required to create and verify a design procedure, as there are no branch calculation methods for heat generation of grease-lubricated bearings. It will be impossible to justify performance of the engine, equipped with such bearings, before the certification body without the verified heat- generation calculation method for grease-lubricated bearings.

The article presents the design procedure for heat emission of hybrid grease-lubricated bearings with ceramic rolling elements. The computational experimental Demidovich’s method is used as the main criterion equation. The Demidovich’s method is distinguishes from the other bearing heat-emission computation methods by availability of the similarity theory elements, as the main criterion equation uses of the bearing geometry features. That is why the dependencies defined by this method represent flexibility for the studied bearing size. The experimental data for the design procedure verification were obtained during the tests of the angular ball bearing size 126308. The coefficients describing the experimental data with enough engineering accuracy were determined due to the analysis. The heat flow calculated in accordance with the presented design procedure can be automated and built in the bearing 3D-model together with the heat flows from the bearing environment.

Keywords:

“hybrid” ball bearing, ceramic rolling elements, temperature, thermal conditions, similarity numbers, power losses

References

  1. Araslanov A.M., Zaidenshtein G.I., Malivanov N.N. Vestnik Samarskogo universiteta. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2004, no. 7 (15), pp. 107 – 110.

  2. Petrov N.I., Lavrent’ev Yu.L. Vestnik Samarskogo universiteta. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2018, vol. 17, no. 2, pp. 154 – 163.

  3. Nozhnitskii N.I., Petrov Yu.A. Povyshenie nadezhnosti podshipnikov kacheniya Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vypusk 9. Podshipniki i uplotneniya. Nauchno-tekhnicheskii sbornik statei (Roller bearings reliability improvement. New technological processes and gas-turbine engines reliability. Edition 9. Bearings and Seals), Moscow, TsIAM, 2013, pp. 3 – 22.

  4. Kikot’ N.V., Marchukov E.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 4, pp. 32 – 36.

  5. Ermilov Yu.I., Ravikovich Yu.A., Klimenko A.V., Kholobtsev D.P. Trudy MAI, 2010, no. 39, available at: http://trudymai.ru/eng/published.php?ID=14806

  6. Zubko A.I., Dontsov S.N. Trudy MAI, 2014, no. 74, available at: http://trudymai.ru/eng/published.php?ID=49296

  7. Ravikovich Yu.A., Ermilov Yu.I., Kholobtsev D.P., Ardatov K.V., Napalkov A.A., Shakh D.I. Trudy MAI, 2011, no. 46, available at: http://trudymai.ru/eng/published.php?ID=26119

  8. Petrov N.I., Lavrent’ev Yu.L. Problemy i perspektivy razvitiya dvigatelestroeniya. Sbornik trudov. (Samara, 22-24 Juni 2016), Samara, Samarskii natsional’nyi issledovatel’skii universitet imeni akademika S.P. Koroleva, 2016, pp. 218 – 219.

  9. Biryukov R.V., Kiselev Yu.V. Nauchnyi vestnik MGTU GA, 2014, no. 205, pp. 55 – 61.

  10. Fernandes C.M.C.G., Martins R.C., Seabra J.H.O. Friction torque of cylindrical roller thrust bearings lubricated with wind turbine gear oils, Tribology International, 2013, no. 59, pp. 121 – 128.

  11. Fernandes C.M.C.G., Martins R.C., Seabra J.H.O. Friction torque of thrust ball bearings lubricated with wind turbine gear oils, Tribology International, 2013, no. 58, pp. 47 – 54.

  12. Kirpichev M.V. Teoriya podobiya (Theory of similarity), Moscow, Izd-vo AN SSSR, 1953, 94 p.

  13. Kodnir D.S. Kontaktno-gidrodinamicheskaya teoriya smazki (Contact-hydrodynamic lubrication theory), Kuibyshev, Kuibyshevskoe knizhnoe izd-vo, 1963, 184 p.

  14. Komissar A.G. Opory kacheniya v tyazhelykh rezhimakh ekspluatatsii (Rolling-contact bearings under heavy operating conditions), Moscow, Mashinostroenie, 1987, 384 p.

  15. Sirotin N.A. Konstruktsiya i ekspluatatsiya, povrezhdaemost’ i rabotosposobnost’ gazoturbinnykh dvigatelei. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok. (Design and operation, failure rate and performance of gas-turbine engines. Design principles of aviation engines and power-generating units), Moscow, RIA “IM-Inform”, 2002, 442 p.

  16. Petrov N.I. Eksperimental’nye issledovaniya po obespecheniyu optimal’nogo teplovogo sostoyaniya mezhrotornykh podshipnikov. Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vypusk 9. Podshipniki i uplotneniya (Experimental examination for ensuring optimal thermal condition of wheel-space bearings. New technological processes and gas-turbine engines reliability. Edition 9. Bearings and seals), Moscow, TsIAM, 2013, pp. 76 – 84.

  17. Aksenov N.K., Petrov N.I. Strukov A.A. Issledovanie teplovogo sostoyaniya podshipnikov opor rotorov perspektivnykh aviatsionnykh dvigatelei // Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vypusk 9. Podshipniki i uplotneniya (Examination of the bearing support thermal state of advanced aircraft engine rotors. New technological processes and gas-turbine engines reliability. Edition 9. Bearings and seals), Moscow, TsIAM, 2013, pp. 69 – 75.

  18. Chichinadze A.V. et al. Trenie, iznos i smazka: tribologiya i tribotekhnika (Friction, wear and lubrication:tribology and triboengineering), Moscow, Mashinostroenie, 2003, 576 p.

  19. Chermenskii O.N., Fedotov N.N. Podshipniki kacheniya: spravochnik-katalog (Roller bearings: catalog guide), Moscow, Mashinostroenie, 2003, 576 p.

  20. Russian – German – English Dictionary on Bearings, SKF 2000, available at: https://en.langenscheidt.com/german-russian/

  21. Belomyttsev O.M. Ob opredelenii dolgovechnosti rolikopodshipnikov v oporakh GTD, rabotayushchikh v usloviyakh natyaga. Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vypusk 9. Podshipniki i uplotneniya. (Life prediction of roller bearings in gas-turbine engine supports operating under interference fit. New technological processes and gas-turbine engines reliability. Edition 9. Bearings and seals), Moscow, TsIAM, 2013, pp. 23 – 44.

  22. Demidovich V.M. Issledovanie teplovogo rezhima podshipnikov GTD (Examination of thermal conditions of gas-turbine engine bearings), Moscow, Mashinostroenie, 1978, 178 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход