Laser ranging systems characteristics for unmanned aerial vehicle strapdown inertial navigation system

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Starovoitov E. I.

Radio Engineering Corporation “VEGA”, 34, Kutuzovskiy prospekt, Moscow, 121170, Russia

e-mail: vega.su

Abstract

Further development of unmanned aerial vehicles (UAV) includes the onboard navigation systems improvement. It is associated with broadening the tasks, performed by advanced UAVs: increasing autonomy fr om the human operator, increase in speed, radius of action, flight time and altitude range

The article studies characteristics of laser ranging systems (LRS), intended for error correction of the strapdown inertial navigation system in the UAVs onboard navigation systems. The author considered the LRS structures based on 3D Flash Ladar-technology and optical-mechanical scanners (OMS) of conventional and hybrid types.

Either Diode-pumped solid-state lasers (DPSSLs), ordiode lasers and fiber lasers can be employed in LSR. Avalanche photodiodes (APD) and PIN photodiodes can be employed for the reflected signal receiving.

The article analyzes the OMS performance. The maximum UAV’s flight speed, on which the LRS with OMS operates, is determined of the ratio of the angular resolution to the angular size of the field of view. Maximum range of LRS measurements is primarily determined by scanning speed and laser pulses’ repetition frequency, and secondly by the power of laser pulses. To expand the speed range, wh ere the conventional type of OMS can be employed, it will be necessary to narrow its angular field of view. In the same flight range of altitudes, the maximum permissible flight speed for hybrid type of OMS will be higher by an order of magnitude.

APD and PIN photodiodes can be implemented in 3D Flash Ladar systems (in which case the maximum range of measurements is reduced by an order of magnitude, as well as increase in the receiving aperture is required).

Traditional type of OMS, based on fiber laser, can be applied for operation in the range of altitudes from 0.4 to 2.0 km (from 0.2 to 1.2 km when PIN photodiodes are used) and flight speeds to 850 km/h.

Hybrid type of OMS, based on fiber laser and APD, can be applied for operation in the range of altitudes from 0.2 to 1.0 km and flight speeds up to 1300 km/h.

Characteristics analysis of of all three LRS types revealed, that the most promising was LRS structure based on hybrid type of OMS, having the highest efficiency. This structure employs fiber laser and APD.

The results of this work can be used while developing the onboard navigation systems for advanced UAVs.

Keywords:

laser ranging system, scanning, unmanned aerial vehicle, navigation, strapdown inertial navigation system, correction

References

  1. Paderin F.G. Trudy MIEA. Navigatsiya i upravlenie letatel’nymi apparatami, 2017, no. 19, pp. 79 – 87.

  2. Anand V., Karthik R.J., Dathan V., Tripathy R.P. UAV Photogrammetry and Lidar Mapping, International Journal of Advanced Scientific Technologies, Engineering and Management Sciences, 2017, vol. 3, Special Issue.1, April, available at: http://www.ijastems.org/wp-content/uploads/2017/04/v3.sia1_.58.UAV-Photogrammetry-and-Lidar-Mapping.pdf

  3. Antonov D.A., Zharkov M.V., Kuznetsov I.M., Lunev E.M., Pron’kin A.N. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75632

  4. Glagolev V.M., Ladonkin A.V. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2016, no. 10, pp. 186 – 195.

  5. Li J., Bi Y., Lan M., Qin H., Shan M., Lin F., Chen B.M. Real-time simultaneous localization and mapping for uav: a survey, Proc. of International micro air vehicle competition and conference, 2016, Beijing, China, 2016, pp. 237 – 242.

  6. Zhang, J. and Singh, S. Visual-lidar odometry and mapping: Low-drift, roust, and fast, Proc. of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington State Convention Center Seattle, Washington, May 26-30, 2015, pp. 2174 – 2181, doi: 10.1109/ICRA.2015.7139486

  7. Bry A., Bachrach A., Roy N. State Estimation for Aggressive Flight in GPS-Denied Environments Using Onboard Sensing, Proc. of the 2012 IEEE International Conference on Robotics and Automation (ICRA), RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012, available at: http://citeseerx.ist.psu.edu/viewdoc/download? DOI: 10.1109/ICRA.2012.6225295

  8. Conte G., Rudol P., Doherty P. Evaluation of a Light-weight Lidar and a Photogrammetric System for Unmanned Airborne Mapping Applications, Photogrammetrie, Fernerkundung, Geoinformation, 2014, vol. 4, pp. 287 – 298, doi: 10.1127/1432-8364/2014/0223.

  9. Starovoitov E.I. Bortovye lazernye lokatsionnye sistemy kosmicheskikh apparatov (Spacecraft onboard laser radar systems), Korolev, RKK “Energiya”, 2015, 160 p.

  10. Starovoitov E.I. Lazernaya lokatsionnaya apparatura v sistemakh upravleniya, mezhbortovoi peredachi energii i informatsii kosmicheskikh apparatov (Laser ranging equipment in control systems, energy and information transmission systems for the spacecraft air-to-air communications), Korolev, RKK “Energiya”, 2016, 148 p.

  11. Gryaznov N.A., Kuprenyuk V.I., Sosnov E.N. Opticheskii zhurnal, 2015, vol. 82, no. 5, pp. 27 – 33.

  12. Medvedev E.M., Danilin I.M., Mel’nikov S.R. Lazernaya lokatsiya zemli i lesa (Laser location of soil and forest), Moscow, Geolidar, Geokosmos; Krasnoyarsk. Institut lesa im. V.N. Sukacheva, 2007, 230 p.

  13. Ul’rikh A. Geomatika, 2016, no. 1, pp. 38 – 53.

  14. Malashin M.S., Kaminskii R.P., Borisov Yu.B. Osnovy proektirovaniya lazernykh lokatsionnykh system (Fundamentals of laser location systems designing), Moscow, Vysshaya shkola, 1983, 207 p.

  15. Gryaznov N.A., Pantaleev S.M., Ivanov A.E. et al. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2013, 2 (171), pp. 197 – 202.

  16. Mel’nikov K.V. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki, 2012, no. 7 (69), pp. 34 – 39.

  17. Park H.J., Turner R., Yun B.Y., Lee J.O. Change detection analysis using airborne LiDAR: open-cut mine environment, Proceedings of the XVI International Mine Surveying Congress (ISM2016), 2016, available at: https://www.ism2016.com/files/ISM2016/Proceedings/Section3/2_HJ_Park.pdf

  18. Jozkow, G., Toth, C., Grejner-Brzezinska, D. UAS topographic mapping with Velodyne LiDAR sensor, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, vol. III-1, pp. 201 – 208, available at: https://doi.org/10.5194/isprs-annals-III-1-201-2016
  19. Lipanov S.I. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 5, pp. 139 – 151.

  20. Trickey E., Church P., Cao Kh. Characterization of the OPAL obscurant penetrating LiDAR in various degraded visual environments, Proc. Of SPIE, 16 May 2013, vol. 8737, doi: 10.1117/12.2015259

  21. Bel’skii A., Zhosan N., Grebenshchikov V., Kargaev A., Brondz D., Gorbachev K., Vorob’ev D. Fotonika, 2013, no. 5(41), pp. 66 – 75.

  22. Kozintsev V.I., Belov M.L., Orlov V.M. et al. Osnovy impul’snoi lazernoi lokatsii (Pulsed laser radar basics), Moscow, Izd-vo MGTU im. N.E. Baumana, 2010, 571 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход