Study and optimization of the thermal state and acceptable level of stresses in the shroud of the turbine rotor blades of a gas generator of aviation high-temperature gas turbine engine

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Le T. D.*, Nesterenko V. G.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: tienduong86stvn@gmail.com
**e-mail: valerynesterenk@yandex.ru

Abstract

The article presents a technique for shrouds of gas generators’ turbine rotor blades designing for conventional and prospective high-temperature gas turbine engines to increase their efficiency, service life and reliability through their cyclic strength in particular. Based on the results of the design studies of temperature state and strength characteristics evaluation of the airfoil blades and their shroud shelves of various configurations, a technique allowing optimize their convective-film cooling was developed. With account for the increased strength characteristics of heat-resistant alloys with rhenium additives, this technique allows designing the shrouds of the high-temperature turbine blades of new generation, while maintaining the required level of allowable stresses and safety margins.

The purpose of the study consisted in identifying the critical areas of the shroud, as well as the airfoil blades requiring increased cooling intensity at reasonable costs of the cooling air. The shroud is usually calculated on bending under the centrifugal forces action, as a cantilever beam of variable cross-section, embedded into the section adjacent to the airfoil blade. A shroud cooling system, which ensures a temperature reduction of the blade of the high-pressure turbine, where the stress values in the shroud are maximum, has been developed. The parameters for the temperature and stress state calculation of the turbine blade shroud of a gas generator were selected to maximize the mode To simulate the viscous flow of incompressible gas in the turbines flow passage, the Navier-Stokes equation was used. In the flow passage domain, a tetra grid was used. On the gas domain surface, a thickening of the grid with 10th prismatic sub-layers was created.

The results of the conducted studies allowed obtain practically significant conclusions and recommendations, which also have a scientific novelty associated with the specification of the nature of the gas flow and the expedient employing of the convective or film cooling in different parts of the shroud and the airfoil blade.

Keywords:

turbine, shroud, turbine blade, cooling system of turbine, convection film cooling

References

  1. Inozemtsev A.A. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok (Fundamentals of designing aircraft engines and power plants), Moscow, Mashinostroenie, 2008, vol. 2, 368 p.

  2. Mattingly J.D. Elements of Propulsion Gas Turbines and Rockets, AIAA, 2006, 867 p. ISBN1563477793.

  3. Mattingly J.D., Heiser W.H., Pratt D.T. Aircraft Engine Design, Second Edition, American Institute of Aeronautics and Astronautics, 2002, 684 p.

  4. Manushin E.A., Surovtsev I.G. Konstruirovanie i raschet na prochnosti turbomashin gazoturbinnykh i kombinirovannykh ustanovok (Design and calculation of strength of gas turbine turbomachines and combined plants), Moscow, Mashinostroenie, 1990, 400 p.

  5. Riznyk S. and Artushenko A. Aeroengine High Pressure Turbine Blade Cooling System Concept. Turbo Expo 2013, Turbine Technical Conference and Exposition, 2013, vol. 3, pp. 9, doi:10.1115/GT2013-95789.

  6. Zhiritskii G.S. Konstruktsiya i raschet na prochnost’ detalei parovykh i gazovykh turbin (Machine parts strength calculation), Moscow, Mashinostroenie, 1993, 640 p.

  7. Birger I.A. et al. Raschet na prochnost’ detalei mashin (Machine parts strength calculation), Moscow, Mashinostroenie, 1993, 640 p.

  8. Matveev V. N., Baturin O. V., Popov G. M., Goryachkin E. S. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2015, vol. 14, no. 3-2, pp. 271 – 283.

  9. Bunker R.P. Axial turbine blade tips: Function, design, durability, Journal of propulsion and power, 2006, vol. 22, no 2, pp. 271 – 285.

  10. Lokai V.I., Maksutova M.K., Strunkin V.A. Gazovye turbiny dvigatelei letatel’nykh apparatov. Teoriya konstruktsiya i raschet (Gas turbines of aircraft engines. Theory of design and calculation), Moscow, Mashinostroenie. 1991. 512 p.

  11. Ardatov K.V., Nesterenko V.G., Ravikovich Yu.A. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46706

  12. Frank Wagner, Arnold Kühhorn, Timm Janetzke and Ulf Gerstberger. Multi-Objective Optimization of the Cooling Configuration of a High Pressure Turbine Blade. Turbo Expo 2018, Turbine Technical Conference and Exposition, 2018. vol. 5, pp. 10, doi:10.1115/GT2018-75616.

  13. Denton J.D. Loss Mechanisms in Turbomachines, Journal of Turbomachinery, 1993, vol. 115, no. 4, pp. 621 – 656.

  14. Li Xu, Sun Bo, You Hongde, Wang Lei. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis, Procedia Engineering, 2015, vol. 99, pp. 1482 – 1491.

  15. Matushkin A.A, Nesterenko V.G. Trudy MAI, 2010, no. 39, available at: http://trudymai.ru/eng/published.php?ID=14813

  16. Gusarov S.A. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29397

  17. Le T.Z. Nesterenko V.G. II Mezhdunarodnyi tekhnologicheskii forum “Innovatsii. Tekhnologii. Proizvodstvo”. Sbornik statei. (Rybinsk, 23-25 March 2015), Rybinsk, RGATU imeni P.A. Solov’eva, 2015, vol. 2, pp. 77 – 80.

  18. Le T.Z. Nesterenko V.G. Nauchno–tekhnicheskii vestnik Povolzh’ya, 2017, no. 4, pp. 54 – 57.

  19. Le T.Z. Nesterenko V.G. 15 Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika”. Tezisy dokladov. (Moscow, 14-18 November 2016), Moscow, MAI, 2016, pp. 302 – 303.

  20. Le T.Z. Nesterenko V. G. Revant R.A. XLII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya-2016”. Sbornik tezisov dokladov. (Moscow, 12-15 April 2016), Moscow, MAI, 2016, vol. 3, pp. 50 – 51.

  21. Gorelov Yu.G., Kazurov V.F., Mikhailov N.I. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2006, no. 2–2(10), available at: http://journals.ssau.ru/index.php/vestnik/article/view/439

  22. Petrushin H.B., Ospennikova O.G., Visik E.M., Rassokhina L.I., Timofeeva O.B. Liteinoe proizvodstvo, 2012, no. 6, pp. 5 – 11.

  23. Petrushin N.V. Svetlov I.L. Ospennikova O.G. Vse materialy. Entsiklopedicheskii spravochnik, 2012, no. 6, pp. 16 – 21.

  24. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 36 – 52.

  25. Kablov E.H., Ospennikova O.G., Petrushin N.V., Visik E.M. Aviatsionnye materialy i tekhnologii, 2015, no. 2 (35), pp. 14 – 25.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход