Heat accumulating processes selection for spacecraft thermal conditions ensuring systems

Strength and thermal conditions of flying vehicles


Belyavskiy A. E.*, Sorokin A. E.**, Strogonova L. В.***, Shangin I. A.****

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: 614kaf1@gmail.com
**e-mail: sorokin@mai.ru
***e-mail: buksan@list.ru
****e-mail: shigor53@rambler.ru


In some cases, it is possible to employ the reversible processes, accompanied by endothermic effects in phase or chemical transformations of working bodies, for heat absorption, released from the energy sources onboard the spacecraft.

With the cyclic energy sources long-term operation, the most effective trend is application of such reversible endothermic melting processes, which are accompanied by the heat absorption at the interface between the liquid and solid phases of the working substance.

The article considers the issues of heat accumulators’ application in the thermal conditions ensuring systems (TCES) to ensure a spacecraft rational thermal state, including habitable bays. It is necessary for the crew medico-technical life support, and the spacecraft TCES weight reduction while the radiator-emitter design on average integral rather than maximum thermal loading when the heat accumulator introduction into the system.

The given dependences of volume and heat-mass characteristics of different processes and concepts of heat storage allow evaluate them from the viewpoint of the efficiency of the heat accumulator application in the spacecraft. It is shown, that the most effective and rational in the thermal respect are the phase-transition melting-solidification processes, thermochemical reactions and sorption reactions.

The successful solution of the space exploration problems requires improvement of the conventional and development of new ways and means of absorbing and diverting the energy dissipated by the equipment. These include the heat storage materials and devices on their basis, absorbing the energy dissipated by consumers in cyclic switching modes

The article deals with the characteristics of heat storage devices and processes occurring while changing the aggregate state of working bodies, namely, the phase transition materials with the required temperature of solid-to-liquid transition and back, their difference from traditional systems. The choice of the type of phase-transition processes from the viewpoint of their prospects for application in the spacecraft the system for thermal regime is justified.

A new trend of the thermal accumulators improvement is indicated, namely, application of composite form-stable phase-transition heat-accumulating materials that retain their shape during the working fluid transition from the solid state to the liquid state and back. This type of heat accumulators do not require sealing of the volume of phase-transition heat-accumulating materials, but it is necessary to ensure reliable mechanical and thermal connection with the structure on which the energy sources are installed.

The required thermal conditions provision of the onboard equipment is a complex and important problem of creating effective thermal control systems. Largely, this is facilitated by the development of heat storage systems for application in complex thermal control systems for further development of the heat storage devices such as heat accumulators.


heat accumulator, space flight, thermal management system, heat load, latent melting heat, chemical heat, reversible reactions, heat of sorption


  1. Andreyanov V.V. et al. Avtomaticheskie planetnye stantsii (Automatic planetary stations), Moscow, Nauka, 1973, 280 p.

  2. Alekseev V.A. Osnovy proektirovaniya teplovykh akkumulyatorov kosmicheskikh apparatov (Spacecraft thermal batteries design fundamentals), Kursk, Naukom, 2016, 248 p.

  3. Babaev B.D. Teplofizika vysokikh temperatur, 2014, vol. 52, no. 5. pp. 760 – 776.

  4. Il’in R.A., Khromykh V.Yu. V Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Perspektivy razvitiya tekhnicheskikh nauk”. Sbornik trudov (Chelyabinsk, 11 July 2018), Chelyabinsk, NN ITsRON, 2018, 18 p.

  5. Makarenko A.V., Sorokin A.E. Model of influence of power line elements on power efficiency of mechatronic modules for advanced mobile objects, Russian Aeronautics, 2017, vol. 60, no. 1, pp. 128 – 133.

  6. Alekseev V.A, Malozemov V.V. Proektirovanie teplovykh akkumulyatorov (of Thermal batteries design: Training manual), Moscow, Izd-vo MAI-PRINT, 2008, 92 p.

  7. Gol’strem V.A., Kuznetsov Yu.M. Spravochnik po ekonomii toplivno-energeticheskikh resursov (Handbook on fuel and energy saving), Kiev, Tekhnika, 1985, 384 p.

  8. Shinde G.D.and P.R. Suresh. A Review on Influence of Geometry and Other Initial Conditions on the Performance of a PCM Based Energy Storage System, International Journal of Thermal Technologies, 2014, vol. 4, no. 3, pp. 214 – 222.

  9. Alekseev V.A., Karabin A.E. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=28050

  10. Egorov K.V., Alekseev V.A. et al. Patent SU 2553411, 10.06.2015.

  11. Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsii aerokosmicheskoi tekhniki pri radiatsionnom nagreve (Heat Transfer and thermal tests of materials and structures for aerospace engineering), Moscow, Izd-vo MGTU im. N.E. Baumana, 2014, 395 p.

  12. Alekseev V.A., Kudryavtseva N.S., Titova A.S. Trudy MAI, 2011, no. 49, available al: http://trudymai.ru/eng/published.php?ID=27715

  13. KaiWang et al. Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres, Continuum Mechanics and Thermodynamics, 2013, no. 25, pp. 23 – 41.

  14. Norton B. Harnessing Solar Heat, Springer Science+Business Media Dordrecht, New York, London, 2014, XVII, 258 p.

  15. Kablov E.N. Metally Evrazii, 2012, no. 3, pp. 10 – 15.

  16. Panin Yu.V., Korzhov K.N. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56911

  17. Cabeza L., Tay N. (Eds.). High Temperature Thermal Storage Systems Using Phase Change Materials, Academic Press, 2018, 328 p.

  18. Ostapenko V.V. Fazoperekhodnyi akkumulyator teploty dlya nuzhd sistem teplosnabzheniya (Phase-transition heat accumulator for the needs of heat supply systems), Doctor’s thesis, Makeevka, Donbasskaya natsional’naya akademiya stroitel’stva i arkhitektury, 2015, – 173 p.

  19. Nabeel S. Dhaidan, J.M. Khodadadi, Melting and convection of phase change materials in different shape containers: A review, Renewable and Sustainable Energy Reviews, vol. 43, March 2015, pp. 449 – 477, https://doi.org/10.1016/j.rser.2014.11.017.

  20. Kenisarin M.M., Kenisarina K.M. Form-stable phase change materials for thermal energy storage, Renewable and Sustainable Energy Reviews, 2012, vol. 16(4), pp. 1999 −2040.

  21. Kudryavtseva N.S. Osnovy proektirovaniya effektivnykh sistem termoregulirovaniya KA (Fundamentals of spacecraft of effective thermal control systems design), Moscow, Izd-vo MAI, 2012, 228 p.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI