Aero-strength studies of a large aspect ratio strut-braced wing

Strength and thermal conditions of flying vehicles


Bezuevskii A. V.*, Ishmuratov F. Z.**

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia



It is believed in many works that by now the aircraft classical scheme is almost brought to perfection, and the probability of new significant breakthroughs is minimal. However, today many other classes of the structures, inferior to the classical scheme by a number of parameters, have significantly larger range of possible basic and parametric improvements. One of these classes of structures is the aircraft with a large aspect ratio wing of a closed structure employing different struts options. The article provides an overview of publications on the study of of such constructions application. In particular, the authors consider the works with different variants of strut-braced wings, as well as the impact of the strut parameters on the aeroelasticity characteristics.

The effect of the strut on the aeroelasticity characteristics and weight efficiency for an aircraft with a large aspect ratio wing was studied. According to the parametric calculations results, the six flight cases of loading with positive and negative overload were found, which determined the strength of the wing. By the terms of strength, the wing box construction parameters for the aircraft without strut and with strut were determined in these calculated cases. The analysis of the obtained structures revealed that the wing box mass of the strut-braced wing is 11% less.

The comparative computational studies of the aeroelasticity characteristics of the obtained structures were performed. It is shown that the velocity head of the determining form of the flutter and the aileron reverse in roll control is 8% — 10% higher for the case of a wing with a strut.

Parametric studies of this model were performed. The optimal position of the strut on the wing chord is the trailing edge of the wing box. This allows win up to 2% of the wing box weight, and increase slightly the efficiency of the aileron and critical speed of the flutter. The wing kink is the most successful position of the strut in terms of the wingspan for this computational model. Also, it is worth noting note that the base stiffness of the strut 2 times increase would be optimal for this model. In this case, the structural weight of the wing box can be further reduced by 6%, and the aileron efficiency and the critical speed of the flutter slightly increased.

This approach application allowed reducing the model wing box weight by 17% without the aeroelasticity characteristics deterioration.


aeroelasticity, closed structures, polynomial Ritz method, strut-braced wing, design, weight efficiency


  1. Livne E., Weisshaar T.A. Aeroelasticity of Nonconventional Airplane Configurations – Past and Future, Journal of Aircraft, 2003, vol. 40, pp. 1047 - 1065, doi: 10.2514/2.7217

  2. Bezuevskii A.V., Ishmuratov F.Z. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 14 - 25.

  3. Semenov V.N. Konstruktsii samoletov zamknutoi i izmenyaemoi skhem (Aircraft structures of closed and variable scheme), Moscow, Izdatel'skii otdel TsAGI, 2006, 228 p.

  4. Keldysh M.V. Vibratsii v vozdushnom potoke kryla s podkosami. Ser. Trudy Tsentral'nogo aerogidrodinamicheskogo instituta im. N.E. Zhukovskogo. Vyp. 357 (Aircraft structures of closed and variable scheme, no. 357), Moscow, Izdatel'skii otdel TsAGI, 1938, pp. 3 - 40.

  5. Mailybaev A.A., Seiranyan A.N. Izvestiya RAN. Mekhanika zhidkosti i gaza, 1998, no. 1, pp. 151 - 162.

  6. Pfenninger W. Design Considerations of Large Subsonic Long Range Transport Airplanes with Low Drag Boundary Layer Suction, Northrop Aircraft, Inc., Report NAI-54-800 (BLC-67), November 1954, 89 p.

  7. Koande I.I. Optimizatsiya s ogranicheniyami po prochnosti i aerouprugosti pri proektirovanii strelovidnykh kryl'ev (Optimization with limitations on strength and aeroelasticity in the swept wings design). Doctor's thesis, Kishinev, 1984, 136 p.

  8. Erwin Sulaeman. Effect of Compressive Force on Aeroelastic Stability of a Strut-Braced Wing, Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 2001, 285 p.

  9. Bhatia M., Kapania R.K., Haftka R.T. Structural and Aeroelastic Characteristics of Truss Braced Wings: A Parametric Study, Journal of Aircraft, 2012, no. 49 (1), pp. 302-310.

  10. Bhatia M., Kapaniay R., van Hoekz M., Haftka R. Structural Design of a Truss Braced Wing: Potential and Challenges, 50th AIAA/ASME/ASCE /AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 4 -7 May 2009, pp. AIAA-2009 - 2147.

  11. Gur O., Bhatia M., Schetz J., Mason W., Kapania R., Mavris D. Design Optimization of a Truss-Braced Wing Aircraft, AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Hilton Head, South Carolina, 21 - 23 September 2009, pp. AIAA-2009 - 7114.

  12. M.Bhatia, R.Kapania, O.Gur, J.Schetz, W.Mason, R.Haftka. Progress towards Multidisciplinary Design Optimization of Truss Braced Wing Aircraft with Flutter Constraints, 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, Texas, 13-15 September 2010, pp. AIAA 2010 - 9077.

  13. Zhang Ke-Shi, Ji Peng-Bo, Bakar Abu, Han Zhong-Hua. Multidisciplinary Evaluation of Truss Braced Wing for Future Green Aircraft. ICAS-2012, 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, Sep.23-28, 2012.

  14. Grasmeyer J.M., Naghshineh-Pour A., Tetrault P.-A., Grossman B., Haftka R.T., Kapania R.K., Mason W.H., Schetz J.A.. Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft with Tip-Mounted Engines, Multidisciplinary Analysis and Design Center for Advanced Vehicles, MAD 98-01-01, 1998, 56 p.

  15. Wrik Malik, Rakesh K. Kapania, Joseph A. Schetz. Effect of Flutter on the Multidisciplinary Design Optimization of Truss-Braced-Wing Aircraft, Journal of Aircraft, 2015, vol. 52, no. 6, pp. 1 – 15, doi: 10.2514/1.C033096

  16. Imon Chakraborty, Taewoo Nam, Jonathan R. Gross, Dimitri N. Marvis, Joseph A. Schetz, Rakesh K. Kapania. Comparative Assessment of Strut-Braced and Truss-Braced Wing Configurations Using Multidisciplinary Design Optimization, Journal of Aircraft, 2015, vol. 52, no. 6, pp. 2009 - 2020.

  17. Guy Norris. Truss-Braced Wings May Find Place On Transonic Aircraft. Aviation, Week & Space Technology, 2016, available at:

  18. Blagodyreva O.V. Trudy MAI, 2017, no. 95, available at:

  19. Blagodyreva O.V. Trudy MAI, 2014, no. 74, available at:

  20. Blagodyreva O.V. Trudy MAI, 2018, no. 100, available at:

  21. Blagodyreva O.V. Trudy MAI, 2013, no. 68, available at:

  22. Gudilin A.V., Evseev D.D., Ishmuratov F.Z., Lipin E.K., Markin V.N., Mosunov V.A., Panteleev I.M., Sotnikov S.V., Tenyaeva V.E., Timonin A.S., Chedrik V.V. Uchenye zapiski TsAGI, 1991, vol. XXII, no. 5, pp. 89 - 101.

  23. Ishmuratov F.Z., Chedrik V.V. ARGON Code: Structural Aeroelastic Analysis and Optimization, International Forum on Aeroelasticity and Structural Dynamics (IFASD), Amsterdam, 2003, 14 p.

  24. Grishanina T.V., Tyutyunnikov N.P., Shklyarchuk F.N. Metod otsekov v raschetakh kolebanii konstruktsii letatel'nykh apparatov (The method of compartments in the calculation of oscillations in aircraft structures), Moscow, Izd-vo MAI, 2010. 180 p.

  25. Tyutyunnikov N.P., Shklyarchuk F.N. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4. pp. 7 - 16.

Download — informational site MAI

Copyright © 2000-2024 by MAI