The satellite for utilization of space debris in near-earth space

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Barkova M. E.

Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia

e-mail: Alttaira@yandex.ru

Abstract

The main problem of article is creation of the spacecraft project for space debris utilization.

The purpose of the presented work consists in developing the concept and design of spacecraft, which will allow space debris reprocessing into fuel.

The relevance of this work consists in the near-earth space clarification from space debris by their reprocessing into fuel.

The main shortcomings of the existing projects of technical devices are large space debris crushing that leads to the smaller fragments formation.

The article suggests employing the concept of pseudo-liquid fuel creation. Pseudo-liquid fuel is the fuel obtained from the fine metallized powder in the gas environment. The spacecraft consists of a trap for space debris gathering, and a system for its utilization by which the space debris are reprocessed into the pseudo-liquid fuel.

The obtained results can be applied while the spacecraft design and operation.

The author comes to a conclusion, that the space debris reprocessing into the pseudo-liquid fuel is the most expedient, since this type of space debris utilization is waste-free.

The author’s unconditional merit is creation of the invention named “The spacecraft for the space debris utilization”, as well as the spacecraft operation design.

The prospect of further developments in this area consists in upgrading the system for the space debris recycling to reduce costs for the project, the spacecraft anti-shock body and its fan-shaped solar collector refining to avoid damaging while space debris collecting and the spacecraft project improvement for future realization.

Keywords:

space, space debris, technogenic, utilization, processing, the satellite for space debris collecting

References

  1. Bogateev I.R., Tarletskii I.S., Balandina T.N., Balandin E.A. Reshetnevskie chteniya, 2016, vol. 1, no 20. C. 14 – 15.

  2. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93299

  3. Treshchalin A.P. Trudy Moskovskogo fiziko-tekhnicheskogo instituta, 2012, vol. 4, no. 3, pp. 122 – 131.

  4. Lebedev V.P., Khakhinov V.V., Medvedev A.V. Solnechno-zemnaya fizika, 2012, no. 20 (133), pp. 97 – 102.

  5. Avdeev A.V. Trudy MAI, 2012, no. 61, available at: http://trudymai.ru/eng/published.php?ID=35496

  6. Trushlyakov V.I., Yutkin E.A. Omskii nauchnyi vestnik, 2013, no. 2 (120), pp. 56 – 61.

  7. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 9, available at: http://trudymai.ru/eng/published.php?ID=74644

  8. Kirillov V.A., Bagateev I.R., Tarletskii I.S., Balandina T.N., Balandin E.A. Sibirskii zhurnal nauki i tekhnologii, 2017, vol. 18, no. 2, pp. 343 – 351.

  9. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu (Space debris – the threat to mankind), Moscow, Izd-vo Instituta kosmicheskikh issledovanii RAN, 2012, 192 p.

  10. Shustov B.M., Rykhlova L.V., Kuleshov Yu.P. et al. Astronomicheskii vestnik, 2013, vol. 47, no. 4, pp. 327 – 340.

  11. Levkina P.A. Fizicheskie i orbital’nye kharakteristiki ob"ektov kosmicheskogo musora po dannym opticheskikh nablyudenii (Physical and orbital characteristics of space debris objects according to optical observations), Doctor’s thesis, Moscow, Glavnaya astronomicheskaya observatoriya RAN, 2016, 123 p.

  12. Pokhil P.F., Belyaev A.F., Frolov Yu.V., Logachev V.S., Korotkov A.I. Gorenie poroshkoobraznykh metallov v aktivnykh sredakh (Powdery metals burning in active environments), Moscow, Nauka, 1972, 294 p.

  13. Golosman E.Z., Efremov V.N. Kataliz v promyshlennosti, 2012, no. 5, pp. 36 – 55.

  14. Nikol’skii V.V. Proektirovanie kosmicheskikh apparatov (Spacecraft design manual), Saint Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet, 2003, 80 p.

  15. Tsap V.N., Baitova S.N., Gapeeva T.M. Pozharovzryvoopasnost’ veshchestv i materialov v agropromyshlennom komplekse (Fire-and-explosion hazard of substances and materials in agro-industrial complex. Reference media), Mogilev, MGUP, 2007, 59 p.

  16. Borshchev V.Ya. Oborudovanie dlya izmel’cheniya materialov: drobilki i mel’nitsy (Equipment for crushing of materials: crushers and mills: manual), Tambov, Izd-vo Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2004, 75 p.

  17. Obzor rynka solnechnykh fotoelementov v Rossii i SNG. Ob"edinenie nezavisimykh ekspertov v oblasti mineral’nykh resursov, metallurgii i khimicheskoi promyshlennosti, 2008, available at: https://www.marketing-services.ru/imgs/goods/1005/rynok_soln_fotoe’l.pdf

  18. Varvin D., Manis A. CubeSat Study Project Review. Orbital Debris Quarterly News, National Aeronautics and Space, 2018, vol. 22, issue 1, avallable at: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv22i1.pdf

  19. Lei Lan, Jingyang Li, Hexi Baoyin, Debris Engine. A Potential Thruster for Space Debris Removal, 2015, available at: https://arxiv.org/vc/arxiv/papers/1511/1511.07246v1.pdf

  20. Kovalev B.K. Razvitie raketno-kosmicheskikh sistem vyvedeniya (Development of orbiting space-rocket systems: manual), Moscow, Izdatel’stvo MGTU im. N.E. Baumana, 2014, 398,

  21. ESA’s Annual Space Environment Report. Produced with the DISCOS Database, available at https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.

  22. Brijesh Patel, Kalpit P. Kaurase, Prabhat Ranjan Mishra. A Critical Review on Safe Disposal Techniques of Space Debris, Journal of Geography, Environment and Earth Science International, 2017, no. 12(3), available at: http://www.journalrepository.org/media/journals/JGEESI_42/2017/Nov/Patel1232017JGEESI36947.pdf

  23. Sokolov N.L. Trudy MAI, 2014, no. 77, available at: http://trudymai.ru/eng/published.php?ID=52950


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход