Turbulent 3D simulation code application to the pressure “hysteresis” analysis in the gas ejector vacuum chamber

Mathematica modeling, numerical technique and program complexes


Аuthors

Larina E. V.1*, Tsipenko A. V.1**, Afanas’ev A. A.1***, Kryukov I. A.2****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1, prospekt Vernadskogo, Moscow, 119526, Russia

*e-mail: larinaelenav@gmail.com
**e-mail: tsipenko_av@mail.ru
***e-mail: tempero@tempero.com
****e-mail: kryukov@ipmnet.ru

Abstract

While studying operation of the supersonic gas ejector as a vacuum pump, special attention was paid to the so-called “hysteresis” observed in the dependence of the pressure in the vacuum chamber on the working gas pressure. The “hysteresis curve” occurs during the ejector start-stop, and oscillatory flow mode, undesirable at the unit operation, is observed herewith. In this regard, a series of numerical experiments on the oscillatory flow mode modelling was performed, and experimental data on the gas ejector operation was analyzed.

The simulation presented in the article was being performed employing the scheme of the increased order of accuracy and a three-parameter k-ε-μt turbulence model. Simulation of the flow with the uniform shear was performed in the simplified and 3D formulation. Collating with the other models was made.

Simulation of a plane submerged jet in the boundary layer approximation was made. A good agreement with experimental data on the averaged flow velocity was obtained.

A simulation of the supersonic overexpanded jet in a three-dimensional formulation was performed. The Pitot pressure at the jet axis was collated with the experiment and other models. The qualitative conformity with the experiment was obtained.

The numerical simulation using the k-ε-μt turbulence model dempnstrated that the “hysteresis” at the ejector start-stop is associated with a non-stationary parameter changes during the ejector start-stop. Thus, the ejector channel and the vacuum chamber parameters will be determined unambiguously under the steady-state boundary conditions. However, when real-life installations operation, the time required to reach the optimum mode at the smooth pressure increase is noticeably longer, than with a first sharp coming to overestimated parameters and then a small smooth throttling of the working gas pressure. The hysteresis loop reflects just this process.

The transient mode with low-frequency pulsations is necessary for the turbulence model verification. These mode predictions are important for the ejector optimal operation. Thus, a 1D self-excited oscillation model should be developed in future.

The work was financially supported by the RFBR grant No. 16-38-60185.

Keywords:

gas ejector, vacuum pump, experimental data, supersonic gas jet, boundary layer separation point, numerical simulation, turbulence, function recovery procedure, homogeneous shear flow, boundary layer flow

References

  1. Sobolev A.V., Zapryagaev V.I., Mal’kov V.M. Teplofizika i aeromekhanika, 2005, vol. 12, no. 1, pp. 149 – 158.

  2. Larina E.V., Tsipenko A.V. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87135

  3. Verma S.B., Stark R., Génin C., Haidn O. Cold gas dual-bell tests in high-altitude simulation chamber, Shock Waves, 2011, vol. 21, issue 2, pp. 131 – 140, doi 10.1007/s00193-011-0302-6

  4. Kartovitskiy L., Lee J.H., Tsipenko A. Numerical and Experimental Investigation of Non-Stationary Processes in Supersonic Gas Ejector, 29th Congress of the International Council of the Aeronautical Sciences. ICAS 2014, ISBN CD: 3-932182-80-4.

  5. Isaev A.I., Skorobogatov S.V. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87336

  6. Ivanov I.E., Kryukov I.A., Larina E.V. Effect of the turbulnet viscosity relaxation time on the modelling of nozzle and jet flows, Fluid Dynamics, 2014, vol. 49, issue 5, pp. 694 – 702, https://doi.org/10.1134/S00154628

  7. Pis’mennyi V.L. Trudy MAI, 2003, no. 12, available at: http://trudymai.ru/eng/published.php?ID=34456

  8. Pis’mennyi V.L. Trudy MAI, 2003, no. 11, available at: http://trudymai.ru/eng/published.php?ID=34476

  9. Golubev V.A., Monakhova V.P. Trudy MAI, 2006, no. 22, available at: http://trudymai.ru/eng/published.php?ID=34102

  10. Borisov V.E., Davydov A.A., Kudryashov I.Yu., Lutsky A.E., Men’shov I.S. Parallel implementation of an implicit scheme based on the LU-SGS method for 3D turbulent flows, Mathematical Models and Computer Simulations, 2015, vol. 7, issue 3, pp. 222 – 232, https://doi.org/10.1134/S2070048215030035

  11. Tavoularis S., Corrsin S. Experiments in a nearly homogeneous shear flow with a uniform mean temperature gradient, Part 1, Journal of Fluid Mechanics, 1981, no. 104, pp. 311 – 347.

  12. Olsen M.E., Coakley T.J. The Lag Model, a Turbulence Model for Non Equilibrium Flows, 15th AIAA Computational Fluid Dynamics, 2001, pp. 2001 – 2564.

  13. Gulyaev A.N., Kozlov V.E., Secundov A.N. A Universal One-Equation Model for Turbulent Viscosity, Fluid Dynamics, 1993, vol. 28, no. 4, pp. 485 – 494.

  14. Wilcox D.C. Turbulence Modeling for CFD, DCW Industries, Inc., Griffin Printing, Glendale, California, 1994, XIX, 460 p.

  15. Abramovich G.N. The theory of turbulent jets, The M.I.T. Press, Cambridge, Massachusetts, 1963, 671 p.

  16. Zapryagaev V.I., Kudryavtsev A.N., Lokotko A.V. An experimental and numerical study of a supersonic jet shockwave structure, West East High Speed Flow Fields – CIMNE, Barcelona, Spain, 2002, pp. 346 – 351.

  17. Chen Y.S., Applications of a new wall function to turbulent flow computations, AIAA Pap. 86-0438, 1986, 11 p.

  18. Sarkar S., Erlebacher G., Hussaini M.Y., Kreiss H.O. The analysis and modeling of dilatational terms in compressible turbulence, Journal of Fluid Mechanics, 1991, vol. 227, pp. 473 – 493.

  19. Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, 1992, no. (4)7, pp. 1510 – 1520.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход