Mathematical model of the mono-bloсk ring gyroscope optical scheme Mathematical model of the optical scheme of the ring monoblock gyroscope

Optical and optical-electronic devices and complexes


Us N. A.*, Avershin A. A.**

MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia



Creation of NINS is one of the priority trends of domestic and foreign instrument making. High requirements for accuracy, availability, continuity and functioning reliability at various operating modes of mobile objects are specified to them. Ensuring implementation of these requirements at the present stage of development of technology is possible through application of laser gyroscopes as sensitive elements of inertial navigation. The presented research considers the new segment of laser gyroscopes – a ring monoblock gyroscope with the semiconductor laser diode (RMG with SLD) incorporating the advantages of the known gas ring laser gyroscopes (RLG) and fiber-optical gyroscopes (FOG). Applications of the new sensor of angular speeds like RMG with SLD as the NINS sensitive element allows simplify the design, adjustment and production technology, as well as vary precision parameters of the object modifications due to the mono-block geometry scaling and controlling the radiation mode of the laser diode. All this makes the task of analysis of the structure and processes, occurring in RMG optical scheme with SLD, with intent for further reliability enhancement of the navigation system output characteristics. The article presents and studies mathematical models of the basic structural and technological RMG solution and a model with increased quality factor, differing by the inclusion of optical resonators with high quality factors of a Fabri-Perot type. Mathematical models were realized using vector-matrix apparatus, which base is the ABCD matrix law. The algorithm for quality factor computing of the RMG optical scheme with open optical channels was developed.

The modeling results of the triangular optical scheme of two structural and technological solutions for optical channels lengths of 50, 100, 150 and 200 mm were analyzed, and rational RMG design options were systematized.


laser gyroscope, optical scheme, model, vector-matrix device, ring mono-block, gyroscope, Fabri-Perot's resonator


  1. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system (Fundamentals of strapdown inertial systems design), Saint Petersburg, Kontsern “TsNII «Elektropribor”, 2011, 280 p.

  2. Bromberg P.V. Teoriya inertsial’nykh sistem navigatsii (Theory of inertial navigation systems), Moscow, Nauka, 1979, 296 p.

  3. Stepanov O.A. Giroskopiya i navigatsiya, 2002, no. 1 (36), pp. 23 – 45.

  4. Morris M. Kuritsky, Murray S. Goldstein. Inertial navigation. IEEE, October 1983, vol. 71, no. 10, pp. 47 – 74.

  5. Nesenyuk L.P. Giroskopiya i navigatsiya, 2002, no. 1 (36), pp. 13 – 22.

  6. Slesarenok S.V., Shepet’ I.P., Rubinov V.I., Tipov Yu.P. Trudy MAI, 2016, no. 86, available at:

  7. Dzhashitov V.E., Pankratov B.M. Matematicheskie modeli teplovogo dreifa giroskopicheskikh datchikov inertsial’nykh system (Mathematical models of thermal drift in the hyroscopic transducer of navigation systems), Saint Petersburg, TsNII “Elektropribor”, 2001, 149 p.

  8. Babur H., Shmidt Dzh. Giroskopiya i navigatsiya, 2000, no. 1 (28), pp. 3 – 15.

  9. Sokolov S.V., Pogorelov V.A. Osnovy sinteza mnogostrukturnykh besplatformennykh inertsial’nykh navigatsionnykh system (Synthesis Basics of Multistructural Strapdown Inertial Navigation Systems), Moscow, Fizmatlit, 2009, 184 p.

  10. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsial’nye navigatsionnye sistemy (Strapdown Inertial Navigation Systems), Kirovograd, Polimed-Servis, 2011, 171 p.

  11. Arkhipov V.A., Polutov A.G., Us N.A., Sklyarova O.N., Zadorozhnii S.P., Smirnov P.V. Patent № 2582900 SU, 27.04.2016.

  12. Kudashov V.N., Plachenov A.B., Radin A.M. Kvantovaya elektronika, 1999, vol. 27, no. 1, pp. 87 – 92.

  13. Bolotnov S.A., Verenikina N.M. Lazernye informatsionno-izmeritel’nye sistemy (Information and measuring systems), Moscow, Izd-vo MGTU im. N.E. Baumana, 2004, Ch. 1, 70 p.

  14. Bykov V.P., Silichev O.O. Lazernye rezonatory (Laser resonators), Moscow, Fizmatlit, 2004, 320 p.

  15. Lomakin A.V. Matrichnye metody v raschete lazernykh rezonatorov (Matrix methods in the laser resonators measurement: Training aids), Moscow, Izd-vo MGTU im. N.E. Baumana, 2000, 31 p.

  16. Dzherard A., Berch Dzh.M. Vvedenie v matrichnuyu optiku (Introduction to matrix methods in optics), Moscow, Mir, 1978, 341 p.

  17. Cvishchev Yu.V. Radiofizika i elektronika, 2009, vol. 14, no. 2, pp. 128 – 132.

  18. Us N.A., Zadorozhnii S.P. Vestnik Voronezhskogo instituta FSIN Rossii, 2018, no. 2, pp. 15 – 24.

  19. Avershin A.A., Us N.A. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2018660692, 28.08.18.

  20. D’yakonov V.P. MATLAB 7.*/R2006/R2007, Moscow, DMK Press, 2008, 768 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI