Spectral method for ACF side lobes suppression for long pseudo-random binary sequences

System analysis, control and data processing


Lyalin K. S.*, Khasanov M. K.**, Meleshin Y. M.***, Kuzmin I. A.****

National Research University of Electronic Technology (MIET), 1, Shokin Square, Zelenograd, Moscow, 124498, Russia

*e-mail: ksl@miee.ru
**e-mail: khaes@yandex.ru
***e-mail: kykymberr@gmail.com
****e-mail: kuzmin.ilya.al@gmail.com


Signals with internal modulation are employed in aviation and space remote sensing systems to obtain a high-quality radar image. This approach allows reaching high image resolution preserving the high signal to noise ratio. The main disadvantage of this approach is sufficient growth of side lobe level. This drawback occurs in a radar image as bright strips that spread out of point or group targets along the range axis. This effect degrades sufficiently the ability to sense the image by human eye and automatically process the image. A typical dynamic range of radar targets brightness is 90 dB, wherein the best side lobe level, which has been achieved in this work is −35 dB by using of phase-shift keying signal of base 2000 and with matched range filtering.

One way to suppress side lobes is unmatched or quasi-optimal filtering, in which the core of the matched filter is changed to achieve desired optimum characteristics, with some loss of effective signal energy. In this work, a method for obtaining the coefficients of a quasi-optimal filter is proposed. The filter allows completely suppress the side lobes in the survey band by pushing them out of the visible radar image range.

The method uses a simple approach of transforming the desired form of the signal response fr om time to frequency domain, wh ere it is possible to find the relation between the input and desired signals, performing the “reciprocal convolution” which corresponds to the quasi-optimal filter impulse response. The main issue here is the difference between the amount of points in the input and output signals, as the output has to be the bigger length of impulse response. We solve the issue by adding additional points to the input signal, which result in a noise-like signal at the output signal’s edges. By selecting the appropriate amount of the “dummy” points we are able to establish the sidelobe-clean region in the output signal.

The article presents theoretical details as well as simulated and practical results.


phase-shift keying, autocorrelation function, side lobes, quasi-optimal filtering, side lobes suppression, Fast Fourier Transform, radar image, synthetic aperture radar, airborne and space radio photography


  1. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75662

  2. Ackroyd M.H., Ghani F. Optimum Mismatched Filters for Sidelobe Suppression, IEEE Transactions on Aerospace and Electronic Systems, 1973, vol. AES-9, no. 2, pp. 214 – 218.

  3. Rihaczek A.W., Golden R.M. Range Sidelobe Suppression for Barker Codes, IEEE Transactions on Aerospace and Electronic Systems, 1971, vol. AES-7, no. 6, pp. 1087 – 1092.

  4. Zoraster S. Minimum Peak Range Sidelobe Filters for Binary Phase-Coded Waveforms, IEEE Transactions on Aerospace and Electronic Systems, 1980, vol. AES-16, no. 1, pp. 112 – 115.

  5. Kuznetsov V.S., Shevchenko I.V., Volkov A.S., Solodkov A.V. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85813

  6. S’yanov V.A. Izvestiya vuzov. Radioelektronika, 2017, no. 2, pp. 53 – 56.

  7. Akbaripour A., Bastani M.H. Range Sidelobe Reduction Filter Design for Binary Coded Pulse Compression System, IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 1, pp. 348 – 359.

  8. Khasanov M., Kurganov V.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2014”. Sbornik trudov, (2005 – 2007), Moscow, IPPM RAN, 2014, Chast’ IV, pp. 133 – 136.

  9. Gruzdov V., Kolkovskii Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii distantsionnogo zondirovaniya Zemli iz kosmosa (New technologies for the Earth remote sensing from space), Moscow, Izd-vo Tekhnosfera, 2018, 482 p.

  10. Merrill I. Skolnik. Radar Handbook. Third Edition, Editor in Chief, McGraw-Hill Companies, 2008, 1351 p.

  11. Nuthalapati R. Mismatched filters for long binary codes. Patent US8380770 B1, 2013, available at: https://ru.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=ru_RU&FT=D&date=20130219&CC=US&NR=8380770B1&KC=B1#

  12. Baden J.M., Cohen M.N. Optimal sidelobe suppression for biphase codes, Telesystems Conference, NTC ’91, National, Atlanta, GA, 1991, vol. 1, pp. 127 – 131.

  13. Vdovin D.V. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=57046

  14. Kadlimatti R., Fam A.T. Good code sets from complementary pairs via symmetrical/antisymmetrical chips, IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 3, pp. 1327 – 1339, doi: 10.1109/TAES.2016.150428

  15. Kozlov V.A., Chistyukhin V.V. Izvestiya vuzov. Elektronika, 2017, vol. 22, no. 5, pp. 487 – 490.

  16. Kudrya A.I., Tolstov E.F., Chetverik V.N. II Vserossiiskie Armandovskie chteniya “Radiofizicheskie metody v distantsionnom zondirovanii sred”. Murom – 2012. Materialy konferentsii (Murom, 26-28 June 2012), Murom, IPTs MI VlGU, 2012, pp. 518 – 531.

  17. Tarasenko A.M. Choosing the way to create the ensembles of m-sequences for modulation of a sounding signal of space-borne sar in order to reduce a maximum sidelobe level of a point target response function, 24th International Crimean Conference Microwave & Telecommunication Technology, Sevastopol, 7-13 Sept. 2014, pp. 1235 – 1236, doi: 10.1109/CRMICO.2014.6959845

  18. Hongwei Liu, Huikai Zang, Shenghua Zhou, Yunhe Cao. Monostatic radar range–Doppler sidelobe suppression using nearly orthogonal waveforms, Radar Sonar & Navigation IET, 2016, vol. 10, no. 9, pp. 1650 – 1659.

  19. H. Zang, S. Zhou, H. Liu and X. Wang. Radar sidelobe suppression using nearly-orthogonal waveforms, IEEE China Summit & International Conference on Signal and Information Processing, China, Xi’an, 2014, pp. 171 – 174.

  20. Borwein P., Choi K.-K. S., Jedwab J. Binary sequences with merit factor greater than 6.34, IEEE Transaction on Information Theory, 2004, vol. 50, no. 12, pp. 323 – 324.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI