Planning automation of production process at aircraft building enterprise employing a digital replica

Automation of technological processes and production control


Gusev P. Y.

Voronezh State Technical University, VSTU, 14, Moskovsky prospect, Voronezh, 394026, Russia



The problems of production processes planning of aircraft building enterprises are of particular relevance. There are many software products based on theoretical planning concepts, such as CRP, APS, MES to solve such problems. However, such software do not ensure adequate feedback with production, which does not allow respond promptly to deviations from the plan. The purpose of this work consists in searching for possible solutions to ensure the operational control of the production plan implementation and its optimization. To achieve this goal, a decision was taken to apply a digital production replica, based on a simulation model.

A working plan developing for a production unit employing a ready-made simulation model is not a time-consuming task. However, while application of such plan, a lot of difficulties occur. Primarily, there is the problem of shift daily tasks preparing. The second problem arises with the impossibility to fulfill the developed plan. To solve such problems, the author proposes to employ an automated planning system using a digital replica of production. The two software clients have been developed to ensure interaction of the digital replica with the planning department and manufacturing facility’s level of production. The software client of the planning department allows prepare plans automatically for the enterprise production processes. The software for manufacturing facility level can encompass all employees of the enterprise. The information terminals provide an automatic transmitting of the shift daily tasks to the manufacturing facility level.

The proposed automated planning system demonstrated high accuracy in complex application. For example, when planning production processes at a workshop for the parts production from polymer composite materials, the digital replica contained information on the entire production system. Thus, when developing a working plan for one of the sections, all possible paths of material flows intersection of the other sections were computed. Use of automated planning of production processes of the workshop for the production of parts from polymer composite materials has significantly improved the accuracy of calculating the timing of the finished product.


digital replica, simulation, aircraft building, planning


  1. Dr. D. Rajasekar, Dr. R. Suresh A study on post implementation benefits of ERP in manufacturing, International Journal of Civil Engineering and Technology (IJCIET), 2017, vol. 8, no. 12, pp. 451 – 464.

  2. Wang D.Q. et al. Research and Development of Mes System for Gearbox Production Line, Applied Mechanics and Materials. Trans Tech Publications, 2013, vol. 385, pp. 1827 – 1830.

  3. Morita D., Suwa H. An Exact Method for Robust Capacity Requirements Planning, International Journal of Automation Technology, 2015, vol. 9, vol. 3, pp. 216 – 221.

  4. Huang X. et al. A New Capacity Requirements Planning Algorithm Based on Heuristic Scheduling, Recent Advances in Computer Science and Information Engineering, Springer, Berlin, Heidelberg, 2012, pp. 373 – 381.

  5. Jodlbauer H., Reitner S. Material and capacity requirements planning with dynamic lead times, International Journal of Production Research, 2012, vol. 50, no. 16, pp. 4477 – 4492.

  6. Chansombat S. et al. A Hybrid Discrete Bat Algorithm with Krill Herd-based advanced planning and scheduling tool for the capital goods industry, International Journal of Production Research, 2018, doi: 10.1080/00207543.2018.1471240

  7. Kristensen J., Asmussen J.N., Wæhrens B.V. The link between the use of advanced planning and scheduling (APS) modules and factory context, Industrial Engineering and Engineering Management (IEEM), 2017 IEEE International Conference on, IEEE, 2017, pp. 634 – 638.

  8. de Man J.C., Strandhagen J.O. Spreadsheet Application still dominates Enterprise Resource Planning and Advanced Planning Systems, IFAC-PapersOnLine, 2018, vol. 51, no. 11, pp. 1224 – 1229.

  9. Haijun Y. et al. An application technology research about FO/AO based on MES system, Control Science and Systems Engineering (ICCSSE), 2017 3rd IEEE International Conference on, IEEE, 2017, pp. 737 – 742, doi:10.1109/ccsse.2017.8088032

  10. Mikhailova E.A., Sbitnev S.N. Trudy MAI, 2013, no. 67, available at:

  11. Krenczyk D. et al. Integration of scheduling and discrete event simulation systems to improve production flow planning, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016, vol. 145, no. 2, pp. 022018.

  12. Babina O.I. Fundamental’nye issledovaniya, 2015, no. 12 (6), pp. 1173 – 1178.

  13. Sobenina O.V., Pak A.A. Sovremennye materialy, tekhnika i tekhnologii, 2016, no. 4, pp. 164 – 167.

  14. Chizhov M.I., Skripchenko Yu.S., Gusev P.Yu. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, vol. 7, no. 12-2, pp. 18 – 20.

  15. Sergeev A.I. Materialy VII Vserossiiskoi nauchno-prakticheskoi konferentsii “Komp’yuternaya integratsiya proizvodstva i IPI-tekhnologii”, Orenburg, OGU, 2015, pp. 206 – 212.

  16. Miller A.M.D., Alvarez R., Hartman N. Towards an extended model-based definition for the digital twin, Computer-Aided Design and Applications, 2018, vol. 15, issue 6, pp. 880 – 891.

  17. Kockmann N. 100% Digital Process Industry–Impressions and Results from the Tutzing Symposium 2018, Chemie Ingenieur Technik, 2018, vol. 90, no. 11, pp. 1621 – 1627.

  18. Pereverzev P., Akintseva A., Alsigar M. Improvement of the quality of designed cylindrical grinding cycle with traverse feeding based on the use of digital twin options, MATEC Web of Conferences, EDP Sciences, 2018, vol. 224, pp. 01033.

  19. Biesinger F. et al. A Case Study for a Digital Twin of Body-in-White Production Systems General Concept for Automated Updating of Planning Projects in the Digital Factory, 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2018, 4-7 September 2018, Torino, Italy, available at:

  20. Leng J. et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop, Journal of Ambient Intelligence and Humanized Computing, 2018, doi: 10.1007/s12652-018-0881-5

  21. Zagidulin A.R., Podruzhin E.G., Levin V.E. Modelirovanie dvizheniya nesvobodnoi sistemy tverdykh tel na primere rascheta amortizatsii shassi legkogo samoleta, Trudy MAI, 2018, no. 102, available at:

  22. Polonik E.N., Surenskii E.A., Fedotov A.A. Trudy MAI, 2016, no. 86, available at:

  23. Chizhov M.I., Skripchenko Yu.S., Gusev P.Yu. Komp’yuternye issledovaniya i modelirovanie, 2014, vol. 6, no. 2, pp. 245 – 252.

Download — informational site MAI

Copyright © 2000-2021 by MAI