Measuring electromechanical characteristics of a complex shape compact low-frequency hydro-acoustic irradiator

Deformable body mechanics


Аuthors

Britenkov A. K.*, Bogolyubov B. N.**, Deryabin M. S.***, Farfel V. A.****

Institute of applied physics of the Russian Academy of Sciences, IAP RAS, 46, Ul’yanov str., Nizhny Novgorod, 603950, Russia

*e-mail: britenkov@ipfran.ru
**e-mail: boris@ipfran.ru
***e-mail: mmm1984@inbox.ru
****e-mail: Farfel

Abstract

Low-frequency hydro-acoustic irradiators are employed in a wide specter of practical applications: from the long-distance underwater acoustic communication and teleguidance to seismic-geophysical prospecting. The irradiator case manufacturing is one of the most complicated technological procedures while its fabrication and tuning. The proposed structure of the hydro-acoustic transducer with corrugated radiating sheath allows eliminate a number of problems such as sealing, tolerance to hydrostatic pressure, parameter spread and reliability. Mechanical transformation ratio measuring was performed to evaluate the suggested irradiator effectiveness. Distribution of oscillations amplitudes of the radiating case and active element were obtained by the laser vibrometry method. The article presents the comparison of the irradiator mechanical characteristics measuring results in the water with the results of its resonant frequency evaluation based on the simplified theoretical model.
Parameters of the suggested hydro-acoustic irradiator demonstrate the prospects of such converter design and manufacturing techniques. The maximum specific acoustic power of the experimental irradiator with the corrugated case exceeds 360 kW/m3, that is more than one and a half times more, than for the existing compact transducers. The irradiator material and case structure allow its transportation by aerospace carriers. Compact radiators of such design may be applied in small-sized and tiny hydro-acoustic systems, modems, control units, sonars and communication at frequencies from hundreds of hertz to tens of kilohertz.

Keywords:

underwater sonar communication, hydro-acoustic modem, electromechanical transformer, low-frequency hydro-acoustic irradiator

References

  1. Rodionov A.Yu., Dubrovin F.S., Unru P.P., Kulik S.Yu. Materialy XXIV Sankt-Peterburgskoi mezhdunarodnoi konferentsii po intelgrirovannym navigatsionnym skhemam, Saint-Petersburg, TsNII Elektropribor, 2017, pp. 153 - 156.

  2. Novikov A.V., Forostyanyi A.A., Chernykh A.V., Fedotenkov A.P., Zharov A.K., Babkin I.Ch. Patent SU 2551834 C1, 27.05.2015.

  3. Gaikovich B.A., Zanin V.Yu., Kozhemyakin I.V., Smol'nikov A.V. Novyi oboronnyi zakaz. Strategii, 2016, no. 2 (39), pp. 76 – 79.

  4. Dellinger J., Ross A., Meaux D., Brenders A., Gesoff G., Etgen J.T., Naranjo J., Openshaw G., Harper M. Wolf-spar, an “FWI-friendly” ultra-low-frequency marine seismic source, Abstracts of the 86th Annual Int. Meeting SEG, Cambridge Applied Physics. 2016, pp. 4891 – 4895.

  5. Bogorodskii V.V., Zubarev L.A., Korepin E.A., Yakushev V.I. Podvodnye elektroakusticheskie preobrazovateli (Underwater electro-acoustic transducers), Leningrad, Sudostroenie, 1983, 248 p.

  6. Rolt K.D. History of flextensional electroacoustic transducers, Journal of the Acoustical Society of America, 1990, vol. 87, pp. 1340 - 1349.

  7. Sapronov A.A., Zibrov V.A., Vorob'ev S.V. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2010, vol. 6, no. 1, pp. 35 – 40.

  8. Klimov M.A. Nezavisimoe voennoe obozrenie, 2018, available at: http://nvo.ng.ru/armament/2014-08-22/13_gidroakustika.html

  9. Shustov A.S. XIII Mezhdunarodnoi nauchnoi konferentsii Evraziiskogo nauchnogo ob"edineniya: Sbornik nauchnykh rabot, Moscow, ENO, 2016, pp. 45 – 48.

  10. Moscaa F., Matte G., Shimura T. Low-frequency source for very long-range underwater communication, Journal Acoustical Society, Am. 2013, vol. 133(1), pp. EL61 - EL67.

  11. Woolet R. Sonar Transducer Fundamentals, Newport - New London, Naval Underwater Systems Center, 1986, 102 p.

  12. Sverdlin G.M. Gidroakusticheskie preobrazovateli i antenny (Hydroacoustic transducers and antennas), Leningrad, Sudostroenie, 1980, 232 p.

  13. Britenkov A.K., Bogolyubov B.N., Smirnov S.A., Perfilov V.A. Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta, 2017, no. 5, pp. 1750104-1–1750104-1.

  14. Andreev M.Ya., Bogolyubov B.N., Klyushin V.V., Rubanov I.L. Datchiki i sistemy, 2010, no. 12, pp. 51 – 55.

  15. Ermolaev E.V., Makhov V.I. Trudy XIV Vserossiiskoi konferentsii “Prikladnye tekhnologii gidroakustiki i gidrofiziki”, Saint Petersburg, Izd-vo Lema, 2018, pp. 637 – 639.

  16. Sysoev O.E., Dobryshkin A.Yu., Nein S.N. Trudy MAI, 2018, no. 98, available at: http://trudymai.ru/eng/published.php?ID=90079

  17. Lependin L.F. Akustika (Acoustics), Moscow, Vysshaya shkola, 1978, 448 p.

  18. Sverdlin G.M. Prikladnaya gidroakustika (Applied hydro-acoustics), Leningrad, Sudostroenie, 1990, 320 p.

  19. Chumakov D.M. Trudy MAI, 2014, no. 78, available at: http://trudym3ai.ru/eng/published.php?ID=53682

  20. Quer R., Dasseux C. Increasing depth capability of “Diabolo” flextensional transducer for active linear arrays, Proceedings of the Institute of Acoustics, 1999, vol. 21, pp. 117 - 125.

  21. Bogolyubov B.N., Kirsanov A.V., Leonov I.I., Smirnov C.A., Farfel' V.A. Gidroakustika, 2015, no. 23(3), pp. 20 - 26.

  22. Smaryshev M.D., Dobrovol'skii Yu.Yu. Gidroakusticheskie antenny (Hydroacoustic arrays), Leningrad, Sudostroenie, 1984, 304 p.

  23. Koryakin Yu.A., Smirnov S.A., Yakovlev G.V. Korabel'naya gidroakusticheskaya tekhnika. Sostoyanie i aktual'nye problemy (Shipborn hydro-acoustics equipment. Status and current problems), Saint-Petersburg, Nauka, 2004, 410 p.

  24. Butler J.L., Charles H.S. Transducers and Arrays for Underwater Sound, Switzerland, Springer, 2007, 610 p.

  25. Rimskii-Korsakov A.V. Elektroakustika (Electro-acoustics), Moscow, Svyaz', 1973, 272 p.

  26. Britenkov A.K., Bogolyubov B.N., Smirnov C.A. Patent SU 2681268, 05.03.2019.

  27. Panich A.A., Skrylev A.V., Dolya V.K., Svirskaya S.N., Dykina L.A., Karyukov E.V., Nagaenko A.V. Trudy XIV Vserossiiskoi konferentsii “Prikladnye tekhnologii gidroakustiki i gidrofiziki”, Saint-Petersburg, Izd-vo Lema, 2018, pp. 470 – 473.

  28. Nesterov A.A., Panich A.A., Svirskaya S.N., Malykhin A.Yu., Skrylev A.V., Panich E.A. Inzhenernyi vestnik Dona, 2012, no. 3 (21), pp. 497 – 501.

  29. Dikarev A.V., Dmitriev S.M. Patent SU 2655702, 29.05.2018.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход