Simulation of a spacecraft noise immune power network

Mathematica modeling, numerical technique and program complexes


Аuthors

Kuksenko S. P.

Tomsk State University of Control Systems and Radioelectronics, 40, Lenin str., Tomsk, 634050, Russia

e-mail: ksergp@tu.tusur.ru

Abstract

The article presents a generalized characteristic of a spacecraft power grid and tendencies of its improvement with regard to power buses application. It proves the relevance of mathematical modelling employing with account for electromagnetic compatibility requirements while the system designing. The article presents a brief description of the software prototype developing specifics in TUSUR for designing elements of the spacecraft distribution network. The prototype is based on the TALGAT system, which functional was updated. The system was employed earlier while fulfilling several space projects. TEM-approximation, the method of moments and the modified method of nodal potentials for calculating parameters of the of transmission lines segments and the response at the end of the structure were used as the mathematical basis for the software prototype developing. Such an approach allows significant simulation time saving, and thus, considering a greater number of possible topologies of the power supply network, as well as speeding up the process of its designing, as compared to electro-dynamic simulation.

The article presents the simulation results of the power bus and wire taps connected to it, as well as the development of a module for evaluating the effectiveness of shielding enclosures with apertures and a database of conducted interference signals. Computing of N-norms used to characterize the signal in the time domain and determine the limit of susceptibility of the equipment were also implemented. Thus, they may be used to evaluate not only the immunity of the spacecraft power supply network, but also its reliability, as well as to identify the most critical network nodes to eliminate product failures during operation.

The approach to reducing the time spent on simulation was tested. It is demonstrated, that the simulation can be accelerated up to 19 times when the frequency dependence of the relative dielectric constant of the dielectric is accounted for.

Keywords:

power system, spacecraft, simulation

References

  1. Khantress U.T., Marov M.Ya. Sovetskie roboty v Solnechnoi sisteme. Tekhnologii i otkrytiya (Soviet Robots in the Solar System. Mission Technology and discoveries), Moscow, Fizmatlit, 2013, 612 p.

  2. Shangina E.A., Patraev V.E., Yakovlev A.V. Aviakosmicheskoe priborostroenie, 2014, no. 6, pp. 8 - 15.

  3. Zhadnov V.V., Artyukhova M.A. Nadezhnost', 2015, no. 1, pp. 13 - 24.

  4. Ivanov V.A., Kirillov V.Yu., Morozov E.P. Model'nye i stendovye issledovaniya elektrizatsii kosmicheskikh apparatov (Model and bench studies of the electrification of spacecraft), Moscow, Izd-vo MAI, 2012, 168 p.

  5. Kirillov V.Yu., Tomilin M.M. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=40836

  6. Kirillov V.Yu., Klykov A.V., Nguen V.Kh. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46550

  7. Allocco J.M. Laminated bus bars for power system interconnects, Applied power electronics conference and exposition (APEC), 1997, vol. 2. pp. 585 - 589.

  8. Wang J., Yang B., Zhao J., Deng Y., He X., Zhixin X. Development of a compact 750KVA three-phase NPC three-level universal inverter module with specifically designed busbar, Twenty-fifth annual IEEE Applied power electronics conference and exposition (APEC), 2010, pp. 1266 - 1271.

  9. Stibgen M. Applying laminated busbars to enhance DC power distribution systems, 26th annual International telecommunications energy conference (INTELEC), 2004, pp. 537 - 541. DOI:10.1109/INTLEC.2004.1401521

  10. Momoh A.J., Xu K. Maximizing serviceability of a ring-bus power system in an spacecraft by implementing multiple objectives, 2005/2006 IEEE/PES Transmission and distribution conference and exhibition, 2006, pp. 909 - 914. DOI: 10.1109/TDC.2006.1668619

  11. Mankikar M. Analysis of various power supply business models, Sixteenth annual IEEE Applied power electronics conference and exposition (APEC), 2002, pp. 54 - 57. DOI: 10.1109/APEC.2001.911626

  12. Lingjie K., Shanshui Y., Li W. Analysis on power supply and distribution system for spacecraft based on reliability, 15th European conference on power electronics and applications (EPE), 2013, pp. 1 - 9. DOI:10.1109/EPE.2013.6631740

  13. Hayashi H., Kuroda T., Kato K., Fukuda K., Baba S., Fukuda Y. ESD protection design optimization using a mixed-mode simulation and its impact on ESD protection design of power bus line resistance, International conference on simulation of semiconductor processes and devices, 2005, pp. 99 - 102. DOI: 10.1109/SISPAD.2005.201482

  14. Luo F., Baisden A.C., Boroyevich D., Ngo K.D.T., Wang F., Mattavelli P., Coppola L., Gazel N., Kang Y. An improved design for transmission line busbar EMI filter, Energy conversion congress and exposition (ECCE), 2010, pp. 1232 - 1238. DOI: 10.1109/ECCE.2010.5617826

  15. Shaimardanov T.R., Zagitov R.R. Aktual'nye problemy aviatsii i kosmonavtiki, 2014, vol. 1, no. 10, pp. 177 - 178.

  16. Zhang X., Zhang H., Yu R.-W., Tan G.-J. Planar bus bar optimum design in high-power converters based on FEM analysis, The 2nd International symposium on power electronics for distributed generation systems, 2010, pp. 167 - 170. DOI: 10.1109/PEDG.2010.5545908

  17. Shashikiran H.K. Magnetic modelling to capture geometry based impedance matrix for Busbar, IEEE International transportation electrification conference (ITEC), 2015, pp. 1 - 3. DOI: 10.1109/ITEC-India.2015.7386904

  18. Eickhoff J. Simulating Spacecraft Systems, Berlin, Springer-Verlag, 2009, 353 p.

  19. Zhang W., Zhang M.T., Lee F.C., Roudet J., Clavel E. Conducted EMI analysis of a boost PFC circuit, Applied power electronics conference and exposition (APEC), Atlanta, 23-27 February,1997, vol. 1, pp. 223 - 229.

  20. Popa I., Dolan A.I. Numerical modeling of DC busbar contacts // 13th International conference on optimization of electrical and electronic equipment (OPTIM), 2012, pp. 188 - 193. DOI: 10.1109/OPTIM.2012.6231869

  21. Smirnova L., Juntunen R., Murashko K., Musikka T., Pyrhönen J. Thermal analysis of the laminated busbar system of a multilevel converter, IEEE Transaction on power electronics, 2016, vol. 31, no. 2, pp. 1479 - 1488. DOI: 10.1109/TPEL.2015.2420593

  22. Liang H., Wang R., Bao L., Wang H., You J. Research on the distribution thermal FEM model for an enclosed isolated phase bus-bar in short-circuit condition, IEEE Holm conference on electrical contacts, 2017, pp. 55 - 58. DOI: 10.1109/HOLM.2017.8088063

  23. Hyder A.K., Wiley R.L., Halpert G., Flood D.J., Sabripour S. Spacecraft power technologies, London, World Scientific Publishing Company, 2010, 492 p.

  24. Patel M.R. Spacecraft Power Systems, Boca Raton, CRC Press, 2005, 691 р.

  25. TALGAT Sistema komp'yuternogo modelirovaniya elektromagnitnoi sovmestimosti, available at: www.talgat.org/talgat-software/

  26. Gazizov T., Melkozerov A., Orlov P., Salov V., Ashirbakiev R., Akhunov R., Kuksenko S., Kalimulin I. New results on EMC simulation for space projects of TUSUR University, IEEE International conference on numerical electromagnetic modeling and optimization for RF, microwave, and terahertz applications (NEMO), 2014, pp. 1 - 4. DOI: 10.1109/NEMO.2014.699567410.1109/NEMO.2014.6995674

  27. Gazizov T., Melkozerov A., Zabolotsky A., Kuksenko S., Orlov P., Salov V., Akhunov R., Kalimulin I., Surovtsev R., Komnatnov M., Gazizov A. Ensurance and simulation of electromagnetic compatibility: recent results in TUSUR University, International conference on applied physics, simulation and computers, 2015, pp. 1 – 12, available at: https://storage.tusur.ru/files/29281/19-2.pdf

  28. Djordjevich A.R., Biljic R.M., Likar-SmiljanicV.D., Sarkar T.K. Wideband frequency-domain characterization of FR-4 and time-domain causality, IEEE Transactions on electromagnetic compatibility, 2001, vol. 43, no 4, pp. 662 - 666.

  29. Kuksenko S.P., Gazizov T.R. Elektromagnitnye volny i elektronnye sistemy, 2012, no. 10. pp. 13 - 21.

  30. Mora N., Vega F., Lugrin G., Rachidi F., Rubinstein M. Study and classification of potential IEMI sources, System design and assessment notes, note 41, 2014, pp. 1 - 48.

  31. Gazizov R.R., Zabolotskii A.M., Belousov A.O., Gazizov T.T. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=73345


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход