Computational studies of some types of operational and technological damages impact on bearing capacity of stringer panels made of composite fiber reinforced plastic

Deformable body mechanics


Dudarkov Y. I.*, Levchenko E. A.**, Limonin M. V.***, Shevchenko A. V.*

Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia



At present, one of the main tendencies while aircraft design is carbon fiber reinforced plastics implementation in the load carrying structure of the airframe. Composites allow the structure weight reduction and the aircraft performance improvement. There are examples of composite materials successful implementation in the wing structure, stabilizer, fuselage and other aircraft structural elements in civil aviation.

A serious problem on the way of effective implementation of modern polymer composite materials in the aircraft airframe load-bearing structures is their high sensitivity to in-service damages and technological defects. The issues of strength characteristics degrading in the presence of damages and defects are generally being solved on the experimental basis. Nevertheless, computational methods allow performing similar estimations.

The article presents the results of numerical studies on operational and technological damages effect on strength and stability characteristics of a stringer panel. Impact damages of skin, stringer delamination, and the stringer peeling fr om the skin were regarded as damages. The effect of the above said damages' sizes on the strength and stability characteristics of the panel was being studied. The studies were performed by the finite elements method, including its nonlinear version.

The article demonstrates the presence of the critical damage size of the skin. Prior this size the requirements to residual strength can be met. This lim it exceeding leads to irreversible process of composite destruction and exhaustion of the panel bearing capacity. Numerical studies of the panel bearing capacity with damage in the stringer allowed determining the minimum value of the panel residual strength at the damage zone size increasing. The obtained results may be handy for the composite structure residual strength estimating and forming damage criteria with regard for possible in-service and technological damages.


composite materials, stringer panel, residual strength, buckling, load-bearing capacity


  1. Chernyshev S.L. et al. Forsait razvitiya aviatsionnoi nauki i tekhnologii do 2030 goda i na dal'neishuyu perspektivu (Aircraft science and technologies development foresight up to 2030 year and further prospect), Moscow, TsAGI, 2014, pp.175 - 176.

  2. Baker A., Dutton S., Kelly D. Composite Materials for Aircraft Structures, Second Edition, Virginia, American Institute of Aeronautics and Astronautics Inc, 2004, pp. 192 - 194.

  3. Breuer U.P. Commercial Aircraft Composite Technology, Springer International Publishing, Switzerland, 2016, 257 p.

  4. Lekhnitskii S.G. Teoriya uprugosti anizotropnogo tela (Theory of anisotropic body elasticity), Moscow, Nauka, 1977, 416 p.

  5. Ambartsumyan S.A. Teoriya anizotropnykh obolochek (Anisotropic shell theory), Moscow, Nauka, 1974, 448 p.

  6. Vasil'ev V.V. Mekhanika konstruktsii iz kompozitsionnykh materialov (Composite material structure mechanics), Moscow, Machinostroenie, 1988, 264 p.

  7. Vasil'ev V.V., Tarnopol'skii Yu.M. Kompozitsionnye materialy. Spravochnik (Composite materials. Handbook), Moscow, 1990, 510 p.

  8. Zamula G.N., Ierusalimskii K.M. Uchenye zapiski TsAGI, 1997, vol. 28, no. 1, pp. 157 - 169.

  9. Andrienko V.M., Sukhobokova G.P. Osobennosti rascheta na prochnost' konstruktsii iz kompozitsionnykh materialov. Proektirovanie raschet i ispytanie konstruktsii iz kompozitsionnykh materialov. Sbornik trudov. Vyp. IX (Features of composite structures strength calculation. Composite material structures design, computation and testing. Collected papers. Issue IX,), Moscow, TsAGI, 1982, pp. 9 - 16

  10. Dudchenko A.A. Prochnost' i proektirovanie elementov aviatsionnykh konstruktsii iz kompozitsionnykh materialov (Strength and designing aviation structural elements from composite materials), Moscow, MAI, 2007, 200 p.

  11. Dudchenko A.A., Kyong L.K., Lur'e S.A. Trudy MAI, 2012, no. 50, available at:

  12. Sirotkin O.S., Grishin V.I., Litvinov V.B. Proektirovanie, raschet i tekhnologiya soedinenii aviatsionnoi tekhniki (Joints in aircraft engineering: design, calculation and technology), Moscow, Machinostroyenie, 2006, 330 p.

  13. Grishin V.I., Dzyuba A.S., Dudar'kov Yu.I. Prochnost' i ustoichivost' elementov i soedinenii aviatsionnykh konstruktsii iz kompozitov (Strength and stability of aircraft structural elements and joints from composites), Moscow, Fizmatlit, 2013, 272 p.

  14. Polilov A.N., Tatus' N.A. Biomekhanika prochnosti voloknistykh kompozitov (Biomechanics of fiber reinforced composites strength), Moscow, Fizmatlit, 2018, 328 p.

  15. Tsai S.W. Strength Theories of Filamentary Structures. Fundamental Aspects of Fiber reinforced Plastic Composites, New York, Wiley Interscience, R.T. Schwartz and H.S. Schwartz, Eds, 1968, pp. 3 - 11.

  16. Dudar'kov Yu.I., Levchenko E.A., Limonin M.V. Aviatsionnaya promyshlennost', 2012, no. 4, pp. 48 - 53.

  17. Dudar'kov Yu.I., Levchenko E.A., Limonin M.V. Issledovaniya Naukograda, 2014, no. 3 (9), pp. 25 - 30.

  18. Dudar'kov Yu.I., Levchenko E.A., Limonin M.V. Zavodskaya Laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 3, pp. 59 - 64.

  19. Composite materials handbook: Polymer matrix composites materials usage, design, and analysis, Kansas, Wichit, 2002, vol. 3, 693 p.

  20. Dudar'kov Yu.I., Limonin M.V., Naumov S.M., Osipyan E.E. Issledovaniya Naukograda, 2015, no.1 (11), pp. 32 – 39.

Download — informational site MAI

Copyright © 2000-2021 by MAI