Spiral antennas application for prospective onboard systems and complexes

Antennas, SHF-devices and technologies


Аuthors

Generalov A. G.*, Gadzhiev E. V.**, Salikhov M. R.*

Research Institute for Electromechanics, 11, Panfilov str., Istra, Moscow Region, 143502, Russia

*e-mail: otd24@niiem.ru
**e-mail: gadzhiev_elchin@mail.ru

Abstract

The onboard antenna-feeder devices constitute an integral part of space vehicles according to both the type used (small or large) and the target-oriented task: Earth remote sensing; weather observation; emergencies monitoring; communications; scientific research; applied research and etc.

Each of the above said tasks solving is accompanied by a certain set of onboard equipment application.

However, there are onboard radio links, such as inter-satellite communication, navigation system, telemetry etc.), which include receiving and transmitting antennas.

The article presents the spiral antennas application for prospective onboard systems and complexes of transportation vehicles.

For example, application of a quadruple single-turn antenna (with operating frequency of 406 MHz) with circular polarization of the clockwise rotation was proposed as a receiving antennae, while a quadruple spiral antennae (with operating frequency of 1544 MHz) with circular polarization of the counterclockwise rotation was proposed as a transmitting one. The emitter and recording device of the transmitting antenna are fabricated by printing technology. Both spiral antennas are employed as a part of the antenna system of the COSPAS–SARSAT onboard equipment.

The COSPAS-SARSAT system includes two types of space vehicles:

- of a low Earth orbit;

- of a geostationary orbit.

The article presents also the spiral antennas developed for various onboard systems and complexes such as telecommand system, satellite navigation, inter-satellite communication, scientific system, etc., for the spacecraft such as “Meteor”, “Ionosphere”, etc.

Keywords:

spacecraft, antenna system, antenna–feeder device, spiral antennas; voltage standing wave ratio, radiation pattern, gain

References

  1. Prigoda B.A., Kokun'ko V.S. Antenny letatel'nykh apparatov (Antennas of aircraft), Moscow, Voenizdat, 1964, 120 p.

  2. Ponomarev L.I., Vechtomov V.A., Miloserdov A.S. Trudy MAI, 2012, no. 52, available at: http://trudymai.ru/eng/published.php?ID=29552

  3. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Antenna–feeder devices in the development of OJSC 'NIIEM', 23rd International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings, Istra, Moscow Region, 2013, pp. 46 - 47.

  4. Bankov S.E., Davydov A.G., Papilov K.B. Zhurnal radioelektroniki, 2010, no. 8, pp. 1 - 27.

  5. Generalov A.G., Gadzhiev E.V. Voprosy elektromekhaniki. Trudy VNIIEM, 2017, vol. 159, no. 4, pp. 31 - 41.

  6. Kondrat'eva S.G. Trudy MAI, 2012, no. 52, available at: http://trudymai.ru/eng/published.php?ID=29560

  7. Yastrebtsova O.I. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87318

  8. Ovchinnikova E.V., Rybakov A.M. Trudy MAI, 2012, no. 52, available at: http://trudymai.ru/eng/published.php?ID=29558

  9. Ovchinnikova E.V., Sokolov A.A. Antenny, 2011, no. 4, pp. 14 - 20.

  10. Izmailov A.A., Volkov A.P. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=81101

  11. Voskresenskii D.I., Gostyukhin V.L., Maksimov V.M., Ponomarev L.I. Ustroistva SVCh i antenny (Antenna and microwave devices), Moscow, Radiotekhnika, 2008, 384 p.

  12. Nefedov E.I. Rasprostranenie radiovoln i antenno-fidernye ustroistva (Radio wave propagation and antenna-feeder devices), Moscow, Izdatel'skii tsentr “Akademiya”, 2010, 320 p.

  13. Kilgus C.C. Shaped-Conical Radiation Pattern Performance of the Backfire Qudrifillar Helix, IEEE Trans on Antennas and Propagation, 1975, no. 23(3), pp. 392 - 397.

  14. Neganov V.A., Tabakov D.P., Yarovoi G.P. Sovremennaya teoriya i prakticheskie primeneniya antenn (Modern theory and practical applications of antennas), Moscow, Radiotekhnika, 2009, 720 p.

  15. Vinogradov A.Yu., Kabetov R.V., Somov A.M. Ustroistva SVCh i malogabaritnye antenny (Microwave devices and low-profile antennas), Moscow, Goryachaya liniya – Telekom, 2012, 440 p.

  16. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Nauchno-tekhnicheskii seminar “Perspektivy razvitiya antenno-fidernykh ustroistv letatel'nykh apparatov”. Sbornik tezisov, Istra, NIIEM, 2013, pp. 55 - 58.

  17. Zakharenko A.B., Fedotov A.Yu., Morozov I.I., Chuyanov D.O. Voprosy elektromekhaniki. Trudy VNIIEM, 2016, vol. 154. no. 5. pp. 25 - 31.

  18. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Voprosy elektromekhaniki. Trudy VNIIEM, 2012, vol. 131, no. 6, pp. 11 - 14.

  19. Kosmicheskii kompleks operativnogo monitoringa tekhnogennykh i prirodnykh chrezvychainykh situatsii “Kanopus-V” s kosmicheskim apparatom “Kanopus-V” No 1 (“Kanopus-V” space complex for operative technogenic and natural emergencies monitoring with “Kanopus-V” No 1 spacecraft), Moscow, VNIIEM, 2011, 110 p.

  20. Belorusskii kosmicheskii kompleks distantsionnogo zondirovaniya Zemli (Belarusian space system for Earth remote sensing), Moscow, VNIIEM, 2011, 88 p.

  21. Dvurechenskii V.D., Telepnev P.P., Fedotov A.Yu. Voprosy elektromekhaniki. Trudy VNIIEM, 2015, vol. 146, no. 3, pp. 24 - 29.

  22. Makridenko L.A., Volkov S.N., Gorbunov A.V., Salikhov R.S., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2017, vol. 156, vol. 1, pp. 2 - 11.

  23. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2014, no. 4 (16), pp. 5 - 12.

  24. Kosmicheskii kompleks gidrometeorologicheskogo i okeanograficheskogo obespecheniya “Meteor-3M” s kosmicheskim apparatom “Meteor-M” No 2 (“Meteor-3M” space complex for hydrometeorological and oceanographic support with “Meteor-M” No 2 spacecraft), Moscow, VNIIEM, 2014, 158 p.

  25. Kosmicheskii kompleks gidrometeorologicheskogo i okeanograficheskogo obespecheniya “Meteor-3M” s kosmicheskim apparatom “Meteor-M” No 2-1 (“Meteor-3M” space complex of hydrometeorological and oceanographic support with “Meteor-M” No 2–1 spacecraft), Moscow, VNIIEM, 2017, 156 p.

  26. Makridenko L.A., Volkov S.N., Gorbunov A.V., Churkin A.L., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2018, vol. 165, no. 4, pp. 46 - 60.

  27. Makridenko L.A., Volkov S.N., Gorbunov A.V., Salikhov R.S., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2018, vol. 166, no. 5, pp. 36 - 48.

  28. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Radiotekhnika, 2018, no. 8, pp. 204 - 211. DOI 10.18127/j00338486-201808-38.

  29. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Application of printing technologies to design on-board antenna systems of spacecrafts, 40th COSPAR Scientific Assembly, Moscow, C0.3-0014-14.

  30. Eksperimental'nyi nauchno-issledovatel'skii malyi kosmicheskii apparat “Universitetskii – Tat'yana-2”: spravochnye materialy (“Universitetsky – Tatiana-2” experimental scientific and research small spacecraft), Moscow, VNIIEM, 2009, 32 p.

  31. Volkov S.N., Makridenko L.A., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2011, vol. 121, no. 2, pp. 3 - 8.

  32. Makridenko L.A., Volkov S.N., Gorbunov A.V., Kozhevnikov V.A., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2017, vol. 160, no. 5, pp. 45 - 54.

  33. Generalov A.G., Gadzhiev E.V. Konferentsiya “Iosif'yanovskie chteniya–2017”, Tezisy dokladov, Istra, NIIEM, 2017, pp. 262 - 265.

  34. Makridenko L.A., Volkov S.N., Gorbunov A.V., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2016, vol. 154, no. 5, pp. 43 - 50.

  35. Makridenko L.A., Volkov S.N., Gorbunov A.V., Khodnenko V.P. Voprosy elektromekhaniki. Trudy VNIIEM, 2016, vol. 155, no. 6, pp. 39 - 46.

  36. Gadzhiev E.V., Tumanov M.V., Generalov A.G. 17-ya Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika – 2018”. Tezisy dokladov, Moscow, Lyuksor, 2018, pp. 248 - 249.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход