Spacecraft motion control while contactless space debris removal


Аuthors

Ryazanov V. V.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: rvv345@inbox.ru

Abstract

The urgency of the issue under consideration is determined by the need to develop methods for cleaning the near-Earth space from space debris objects that pose a threat to the spacecraft functioning. The article considered the process of removing the CubSat3U format nanosatellite from the near-Earth orbit by a contactless method employing an active spacecraft equipped with ion and control engines. A nanosatellite can serve as a universal base for conducting orbital experiments to develop the technology for removal using ion beam. When analyzing the removal process, it was assumed that at the stage of towing the distance between the active spacecraft and nanosatellite remains constant. For the stages of approach and towing, it is necessary to know the maximum value of control engines thrust, and the time of movement stabilization at which the nanosatellite center of mass will be located on the longitudinal axis of the blowing engine of the active spacecraft. The presented work is devoted to the analysis of the proposed control laws for the active spacecraft. The author obtained differential equations of the motion of an active spacecraft relative to a nanosatellite in the orbital coordinate system for the stages of approach and towing. The article suggest control laws of an active spacecraft relative to nanosatellite for the stages of approach and towing. Aerodynamic coefficients of the object being removed were used for determining the force transmitted from the ion beam to nanosatellite. With the selected coefficients of the control laws, the time of motion stabilization was determined.

Keywords:

space debris, nanosatellite, noncontact method, ion beam, control law

References

  1. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor — ugroza chelovechestvu (Space debris — a threat to humankind), Moscow, Izd-vo Instituta kosmicheskikh issledovanii RAN, 2012, 192 p.

  2. Kessler D.J., Cour-Palais B.G. Collision frequency of artificial satellites: the creation of a debris belt, Journal of geophysical research, 1978, vol. 83, issue A6, pp. 2637 — 2646.

  3. Shan M., Guo J., Gill E. Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, 2016, vol. 80, pp. 18 — 32.

  4. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93299

  5. Ashurbeili I.R., Lagovier A.I., Ignat’ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, available at: http://trudymai.ru/eng/published.php?ID=24856

  6. Phipps C.R. A laser-optical system to re-enter or lower low earth orbit space debris, Acta Astronautica, 2014, vol. 93, pp. 418 — 429.

  7. Larouche B.P., Zhu Z.H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control, Autonomous Robots, 2014, vol. 37, issue 2, pp. 157 — 167.

  8. Andrenucci M., Pergola P., Ruggiero A. Active removal of space debris-expanding foam application for active debris removal. ESA Final Report, Pisa, 2011, 132 p., available at: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACTRPT-MAD-ARI-10-6411-Pisa-Active_Removal_...

  9. Sharf I., Thomsen B., Botta E.M., Misra A.K. Experiments and simulation of a net closing mechanism for tether-net capture of space debris, Acta Astronautica, 2017, vol. 139, pp. 332 — 343.

  10. Barkova M.E. Kosmicheskii apparat dlya utilizatsii kosmicheskogo musora v okolozemnom prostranstve, Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100712

  11. Forshaw J.L., Aglietti G.S., Salmon T., Retat I., Roe M., Burgess C., Chaumette F. Final payload test results for the Remove Debris active debris removal mission, Acta Astronautica, 2017, vol. 138, pp. 326 — 342.

  12. Aslanov V.S., Sizov D.A. Trudy MAI, 2018, no. 100, available at: http:// trudymai.ru/eng/published.php?ID=93301

  13. Aslanov V.S. Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque, Nonlinear Dynamics, 2017, vol. 90, issue 4, pp. 2545 — 2556.

  14. Schaub H., Parker G.G., King L.B. Challenges and prospects of Coulomb spacecraft formation control, Journal of Astronautical Sciences, 2004, vol. 52, issue 1, pp. 169 — 193.

  15. Merino M., Ahedo E., Bombardelli C., Urrutxua H., Pelaez J. Ion Beam Shepherd Satellite for Space Debris Removal, Progress in Propulsion Physics, 2013, vol. 4, pp. 789 — 802.

  16. Kupreev S.A. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=69696

  17. Ryazanov V.V., Ledkov A.S. Izvestiya Saratovskogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 2019, vol. 19, no. 1, pp. 82 — 93.

  18. Bombardelli C., Merino M., Ahedo E., Pelaez J., Urrutxua H., Iturri-Torreay A., Herrera-Montojoy J. Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal. ESA Final Report, Madrid, 2011, 90 p., available at: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPTMAD-ARI-10-6411c-1107-FR-Ariadna-Ion...

  19. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object, Acta Astronautica, 2016, vol. 119, pp. 241 — 251.

  20. Aslanov V.S., Yudintsev V. Motion Control of Space Tug During Debris Removal by a Coulomb Force, Journal of Guidance, Control and Dynamics, 2018, vol. 41, no. 7, pp. 1476 — 1484.


Download

mai.ru — informational site MAI

Copyright © 2000-2022 by MAI

Вход