Аuthors

Ulybyshev S. Y.

Central Scientific Research Institute of Chemistry and Mechanics, 16a, ul. Nagatinskaya, Moscow, 115487, Russia

e-mail: wardoc5@rambler.ru

Abstract

This article is a continuation of the previous work, where the issues of substantiation and elaboration of the design appearance of a promising spacecraft towing vehicle (STV) with two variants of the propulsion system (DU) using liquid rocket engines (LRE) and stationary plasma engines (SPD) were considered, as well as the calculation of the power supply system of STV.

This paper describes in detail the features of the implementation of schemes for the space debris object (SDO) disposal by the STV, with the SPD remote control. The control laws of thrust vector orientation at the stages of flight to the SDO orbit with its subsequent removal, ensuring the problem solution, are selected. Mathematical modeling and comparison on the reachability area for two variants of the orbit of burial being formed, coplanar to the SDO orbit and synchronously precessing with it, were performed. In the first case, determining the scheme of one mission to the SDO orbit and the coplanar descent are hampered by the required orbit mismatch along the longitude of the ascending node (LAN) for the flight start and ensuring the possibility of operations repeating. In the second scheme, this aspect is eliminated by creation of synchronous precession orbits (SPO) during the flight by the inclination correcting. The limits of these schemes efficiency depending on the inclination and altitude of the SDO orbit were determined. Recommendations on the possibility of these flight schemes application depending on the orbits parameters of the towed objects are formulated.

Keywords:

mathematical modeling, spacecraft-towing, space debris object, propulsion system, liquid rocket engine, stationary plasma engine, orbit of burial, coplanar orbit, synchronous precession orbit

References

  1. Ulybyshev S.Yu. Trudy MAI, 2019, no. 106, chast' 1, available at: http://trudymai.ru/eng/published.php?ID=105746

  2. Lebedev V.N. Raschet dvizheniya kosmicheskogo apparata s maloi tyagoi (Calculation of the spacecraft motion the with low thrust), Moscow, VTs AN SSSR, 1968, 108 p.

  3. Avdeev Yu.F., Belyakov A.I., Brykov A.V. et al. Polet kosmicheskikh apparatov: Spravochnik (Spacecraft flight: Examples and problems), Moscow, Mashinostroenie, 1990, 272 p.

  4. Salmin V.V., Chetverikov A.S. Reshetnevskie chteniya, 2010, vol. 1, no. 14, pp. 32 - 33.

  5. Salmin V.V. Optimizatsiya kosmicheskikh poletov s maloi tyagoi: problemy sovmestnogo upravleniya traektornym i uglovym dvizheniem (Optimization of low-thrust space flights: joint control problems of trajectory and angular motion), Moscow, Mashinostroenie, 1987, 208 p.

  6. Maslennikov A.A. Izvestiya Rossiiskoi akademii nauk. Energetika, 2012, no. 2, pp. 126 - 141.

  7. Petukhov V.G., Ivanyukhin A.V. Izvestiya Rossiiskoi akademii nauk. Energetika, 2016, no. 2, pp. 92 - 101.

  8. Petukhov V.G. Kosmicheskie issledovaniya, 2011, vol. 49, no. 2, pp. 128 - 137.

  9. Salmin V.V., Starinova O.L., Chetverikov A.S., Bryukhanov N.A., Khamits I.I., Filippov I.M., Lobykin A.A., Burylov L.S. Kosmicheskaya tekhnika i tekhnologiya, 2018, no. 1(20), pp. 82 - 97.

  10. Zelentsov V.V. Nauka i obrazovanie, 2015, no. 4, pp. 89 - 104.

  11. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644.

  12. Aslanov V., Yudintsev V. Dynamics of large space debris removal using tethered space tug, Acta Astronautica, 2013, vol. 91, pp. 149 - 156.

  13. Baranov A.A., Grishko D.A., Chernov N.V. Nauka i obrazovanie, 2016, no. 4, pp. 48 - 64.

  14. Baranov A.A., Grishko D.A., Medvedevskikh V.V., Lapshin V.V. Kosmicheskie issledovaniya, 2016, vol. 54, no. 3, pp. 242 - 251.

  15. Baranov A.A., Grishko D.A. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2015, no. 4, pp. 160 - 171.

  16. Trushlyakov V.I., Yutkin E.A. Omskii nauchnyi vestnik, 2013, no. 2 (120), pp. 56 - 61.

  17. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93299

  18. Kirillov V.A., Bagateev I.R., Tarletskii I.S., Balandina T.N., Balandin E.A. Sibirskii zhurnal nauki i tekhnologii, 2017, vol. 18, no. 2, pp. 343 - 351.

  19. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu (Space debris is a threat to humanity), Moscow, Izd-vo Instituta kosmicheskikh issledovanii RAN, 2012, 192 p.

  20. Aslanov V.S., Ledkov A.S., Stratilatov N.R. Polet, 2009, no. 1, pp. 54 - 60.

  21. Aslanov V.S., Ledkov A.S. Dynamics of Towed Large Space Debris Taking Into Account Atmospheric Disturbance, Acta Mechanica, 2014, vol. 225, no. 9, pp. 2685 - 2697.

  22. Ulybyshev S.Yu. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 3, available at: http://engjournal.ru/catalog/arse/adb/1471.html. DOI 10.18698/2308-6033-2016-03-1471.

  23. Ulybyshev S.Yu. Trudy MAI, 2018, no. 98, available at: http://trudymai.ru/eng/published.php?ID=90354

  24. Ulybyshev S.Yu. Kosmicheskie issledovaniya, 2015, vol. 53, no. 4, pp. 332 - 344.

  25. Baranov A.A., Budyanskii A.A., Chernov N.V. Kosmicheskie issledovaniya, 2015, vol. 53, no. 5, pp. 409 - 414.

  26. Razumnyi Yu.N., Kozlov P.G., Razumnyi V.Yu. Nauchno-tekhnicheskii vestnik Povolzh'ya, 2015, no. 3, pp. 196 – 199.

  27. Pakhomov L.A. Distantsionnoe zondirovanie atmosfery so sputnika “Meteor” (Remote sensing of atmosphere fr om the “Meteor” satellite), Moscow, Gidrometeoizdat, 1979, 143 p.

  28. Ledkov A.S. Nauka i obrazovanie, 2014, no. 10, pp. 383 - 397.

  29. The Threat of Orbital Debris and Protecting NASA Space Assets from Satellite Collisions, available at: http://images.spaceref.com/news/2009/ODMediaBriefing28Apr09-1.pdf

  30. GOST R 52925-2008. Izdeliya kosmicheskoi tekhniki. Obshchie trebovaniya k kosmicheskim sredstvam po ogranicheniyu tekhnogennogo zasoreniya okolozemnogo kosmicheskogo prostranstva (State Standard R 52925-2008. Products of space technology. General requirements for space facilities to lim it technogenic pollution of near-earth space), Moscow, Standarty, 2008, 6 p.

  31. Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent RF № 170380, 024.04.2017.

  32. Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent RF № 2610793, 15.02.2017.

  33. Glushkov A.V., Ulybyshev S.Yu. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96960

  34. Glushkov A.V., Ulybyshev S.Yu. Nauchno-tekhnicheskaya konferentsiya “Innovatsionnye avtomaticheskie kosmicheskie apparaty dlya fundamental'nykh i prikladnykh issledovanii. Aktual'nye voprosy sozdaniya sluzhebnykh i nauchnykh system”: sbornik trudov (Anapa, 06-11 September 2015), Khimki, NPO im. S.A. Lavochkina, 2015, pp. 316 – 322.

  35. Ulybyshev S.Yu. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2019, no. 5, pp. 143 - 152.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход