Electro-dynamic tether system stabilization in a circular orbit


Аuthors

Ledkov A. S.*, Sobolev R. G.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: ledkov@inbox.ru
**e-mail: e-mail:r.g.sobolev@ya.ru

Abstract

The existence of technologies for strong materials production allows create extended space tether systems, which can be employed to solve a wide range of practical issues. Some projects imply the space tether system stabilization in a certain position. Stabilization can be realized by of the conductive cable interaction with the Earth electromagnetic field. The goal of the work consists in searching for the tether current control law, ensuring of the space tether system stabilization in a certain stationary state in a circular orbit. In contrast to the majority of existing works, the article considers the simultaneous stabilization of the system center of mass in a circular orbit and tether deflection angle stabilization in a certain stationary position.

A mathematical model of the cable system is described, and equations of motion using the second-kind Lagrange equations are obtained. In the framework of the assumptions made, the tether is considered as inelastic massless rod, and the bodies connected by it are material points. The model accounts for the attraction of the Earth and the Ampere force. A current in the electro-dynamic cable is considered as a control element. Control is sought as the sum of the programmed and stabilizing current force. It is shown that a limited set of program motions in a circular orbit can be implemented in the system. Equations of these motions are obtained. The stabilizing control is sought in the form of a linear dependence on generalized coordinates and velocities. The law of stabilizing control is sought in the form of a linear dependence on generalized coordinates and velocities. Selection of the control law parameters was performed using the Lyapunov theorem on asymptotic stability in the first approximation. Numerical simulation was executed to demonstrate the effectiveness of using an electrodynamic tether for the system stabilization in a circular orbit.

The results of the work may be employed while preparation of space programs involving of electro-dynamic tether systems implementation in a circular orbit.

Keywords:

electrodynamic tethered system, Lagrange equations, dipole model, Lyapunov method, stabilizing control

References

  1. Beletskii V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system (Space tether systems dynamics), Moscow, Nauka, 1990, 336 p.

  2. Aslanov V.S., Ledkov A.S. Dynamics of tethered satellite systems, Cambridge, Woodhead Publishing, 2012, 331 p.

  3. Cosmo M.L., Lorenzini E.C. Tethers in space handbook, Cambridge, Smithsonian Astrophysical Observatory, 1998, 256 p.

  4. Aslanov V.S., Ledkova T.A. Modelling the reusable space transport system for small payloads delivery, Journal of Physics: Conference Series, 2018, vol. 1050 (012004), no. 1, pp. 1 — 7, available at: https://iopscience.iop.org/article/10.1088/1742-6596/1050/1/012004/pdf

  5. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93299

  6. Rodnikov A.V. Kosmicheskie issledovaniya, 2006, vol. 44, no. 1, pp. 62 — 72.

  7. Ledkov A.S., Sobolev R.G. Vestnik Tomskogo gosudarstvennogo universiteta, Matematika i mekhanika, 2018, vol. 52, pp. 63 — 74.

  8. Ziegler S.W., Cartmell M.P. Using motorized tethers for payload orbital transfer, Journal of Spacecraft and Rockets, 2001, vol. 38, no. 6, pp. 90 — 913.

  9. Lorenzini E.C., Bombardelli C. Participation in the Analysis of the Far-Infrared/Submillimeter Interferometer, Cambridge, Smithsonian Institution Astrophysical Observatory, 2005, 33 p.

  10. Aslanov V.S., Yudintsev V.V. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87150

  11. Kupreev S.A. Trudy MAI, 2015, no. 84, available at: http://trudymai.ru/eng/published.php?ID=63053

  12. Kupreev S.A. Trudy MAI, 2016, 88, available at: http://trudymai.ru/eng/published.php?ID=69696

  13. Sanmartin J.R., Lorenzini E.C., Martinez-Sanchez M. Electrodynamic Tether Applications and Constraints, Journal of Spacecraft and Rockets, 2010, vol. 47, no. 3, pp. 442 — 456.

  14. Pelaez J., Lorenzini E.C., Lopez-Rebollal O., Ruiz M. A new kind of dynamic instability in electrodynamic tethers, Advances in the Astronautical Sciences, 2000, vol. 105, pp. 1367 — 1386.

  15. Ruiz M., Lorenzini E.C., Cosmo M.L. Two-Bar Model for the Dynamics and Stability of Electrodynamic Tethers, Journal of Guidance, Control, and Dynamics, 2002, vol. 25, no. 6, pp. 1125 — 1135.

  16. Williams P. et al. Libration Control of Flexible Tethers Using Electromagnetic, Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 5, pp. 882 — 897.

  17. Li G., Zhu Z.H., Meguid S.A. Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit, Aerospace Science and Technology, 2016, vol. 49, pp. 112 — 129.

  18. Williams P., Blanksby C., Trivailo P. The Use of Electromagnetic Lorentz Forces as a Tether Control Actuator, In 52nd International Astronautical Congress, 2002, 33 p.

  19. Netzer E., Kane T.R. Electrodynamic forces in tethered satellite systems. Part I: System control, IEEE Transactions on Aerospace and Electronic Systems, 1994, vol. 30, no. 4, pp. 1031 — 1038.

  20. Corsi J and Iess L. Stability and control of electrodynamic tethers for de-orbiting applications, Acta Astronautica, 2001, vol. 48, pp. 491 — 501.

  21. Forward R.L., Hoyt R.P., Uphoff C.W. Terminator TetherTM: a spacecraft deorbit device, Journal of Spacecraft and Rockets, 2000, vol. 3, no. 2, pp. 187 — 196.

  22. Kul’kov V.M. Aerospace MAI Journal, 2011, vol. 18, no. 2, pp. 41 — 46.

  23. Aleksandrov V.V., Boltyanskii V.G., Lemak S.S., Parusenkv N.A., Tikhomirov V.M. Optimal’noe upravlenie dvizheniem (Optimal motion control), Moscow, Fizmatlit, 2005, 376 p.

  24. Markeev A.P. Teoreticheskaya mekhanika (Theoretical mechanics), Moscow, CheRo, 1999, 572 p.

  25. Pontryagin L.S. Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow, Nauka, 1974, 331 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход