Operational evaluation of target hit errors by free-falling containers of small-class unmanned aerial vehicles


Аuthors

Anan’ev A. V.1*, Rybalko A. G.1**, Goncharenko V. I.2***, Klevcov R. P.3****

1. MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
3. MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin” (branch in the city of Chelybinsk), 40, Gorodok-11, Chelybinsk, 454015, Russia

*e-mail: sasha303_75@mail.ru
**e-mail: rybalkovvs@yandex.ru
***e-mail: fvo@mai.ru, vladimirgonch@mail.ru
****e-mail: ronin0877@mail.ru

Abstract

The article introduces a new approach to solving the problem of in-the-field operational determining of systematic error of drop-off a free-fall unguided container by prospective small-class strike unmanned aerial vehicles.

Analysis of the existing techniques of drop points’ coordinates determination of destruction weapons, employed for the manned aircraft, revealed their poor accuracy, which does not allow further performing the effectiveness evaluation of strike unmanned aerial vehicles application while ground targets striking.

Two ways of drop points coordinates determination of a free-fall unguided container were developed. They are based on modification of measuring and resection methods. The first technique realizes the direct measuring method, differing from the other by the sounding signal device application, particularly, a laser measuring device. The second technique is based on the indirect measurement method. Its difference from the resection method consists in the simplified order of measurements realization, and the application of one laser measuring device, instead of three.

The presented work reveals the content and the order of realization of each technique, which allows apply them not only for tests performing, but also while planned flights execution of unmanned aerial vehicles to maintain a high-level proficiency of operators at the ground control stations.

A scientific-methods apparatus for accuracy evaluation, based on comparing a polygon area as well as error theory methods, was developed for determining measuring error of the drop points coordinates of ammunition dummies performed by suggested and well-known methods.

Thus, two new operational techniques for drop points determining of ammunition dummies, being dropped from strike unmanned aerial vehicles, were developed. These techniques ensure two times and more increasing in performed measures accuracy. It will allow increase the efficiency of the systematic error determining for the batch small-class strike unmanned aerial vehicles in the field (combat) conditions.

Keywords:

unmanned aerial vehicles attack, ammunition model, deviation measuring technique, falling position data

References

  1. Novak K.V., Gorokhova E.A., Toforov M.S. Robotizatsiya Vooruzhennykh Sil Rossiiskoi Federatsii: sbornik trudov II Voenno-nauchnoi konferentsii, Moscow, GNIITsRT, 2017, pp. 187 - 195.

  2. Anan'ev A.V., Filatov S.V., Rybalko A.G. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 12, pp. 455 - 458.

  3. Anan'ev A.V., Filatov S.V., Petrenko S.P., Rybalko A.G. Aerospace MAI Journal, 2019, no. 1, pp. 102 - 109.

  4. Rukovodstvo po boevomu primeneniyu aviatsionnykh sredstv porazheniya nazemnykh (morskikh) ob"ektov. Chast' 1. Aviatsionnye neupravlyaemykh sredstva porazheniya (Guide to tactical employment of aviation weapons of destruction of ground (sea) objects. Part. 1. Aviation uncontrollable weapons of destruction), Moscow, Voenizdat, 1984, 392 p.

  5. Monsik V.B. Statisticheskie osnovy aviatsionnogo vooruzheniya (Statistical basics of air warfare), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2003, 484 p.

  6. Nikolaev S.V., Barantsev S.M., Kolodezhnov V.N., Shatovkin R.R., Kupryashkin I.F. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=99217

  7. Shutov P.V., Efanov V.V. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49684

  8. Lavskii V.M. Spravochnik letchika i shturmana (Reference book for the pilot and navigator), Moscow, Voenizdat, 1974, 512 p.

  9. Koziratskii Yu.L., Kuleshov P.E., Chernukho I.I. Patent 2516205 SU. MPK F41J 5/00, 20.05.2014.

  10. Nizhnetagil'skii institut ispytaniya metallov. Deyatel'nost' letno-ispytatel'noi bazy, available at: http://ntiim.ru/ipress.php?x=lib/deyat/10

  11. Chupakhin A.P., Savin M.L. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2014, no. 11, vol. 2, pp. 273 - 279.

  12. Chupakhin A.P., Lutskov Yu.I. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2014, no. 9, vol. 1, pp. 120 - 126.

  13. Serkin F.B., Vazhenin N.A., Veitsel' A.V. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=67824

  14. Podshivalov V.P., Nesterenok M.S. Inzhenernaya geodeziya (Engineering geodesy), Minsk, Vysshaya shkola, 2011, 464 p.

  15. Koklyugin V.V. Programmnyi kompleks podgotovki ekipazhei vozdushnykh sudov k poletam “Flagman Avia”. Spetsializirovannoe programmnoe obespechenie “Planshet poligona” ver. 3.3, available at: http://koklugin.narod.ru/.

  16. Goncharenko V.I., Kan Yu.S., Travin A.A. Trudy MAI, 2012, no. 61, available at: http://trudymai.ru/eng/published.php?ID=35615

  17. Pikalov S.A. Trudy MAI, 2012, no. 51, available at: http://trudymai.ru/eng/published.php?ID=2914

  18. Kirillovskii V.K. Opticheskie izmereniya. Chast' 1. Vvedenie v obshchie voprosy. Tochnost' opticheskikh izmerenii (Optical measurements. Part 1. Introduction to general issues. Accuracy of optical measurements), Saint Petersburg, GITMO (TU), 2003, 47 p.

  19. Vygodskii M.Ya. Spravochnik po elementarnoi matematike (Reference book on elementary mathematics), Moscow, Astrel', 2014, 509 p.

  20. Teilor Dzh. Vvedenie v teoriyu oshibok (An introduction to error analysis), Moscow, Mir, 1985, 272 p.

  21. Annenkova I.Yu., Gribanov A.S. Trudy MAI, 2011, no. 42, available at: http://trudymai.ru/eng/published.php?ID=24260

  22. Anan'ev A.V., Goncharenko V.I., Lyutin V.I. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2019, no. 666, pp. 47 - 57.

  23. Ananev A.V., Goncharenko V.I. Scenario planning of activities of the group of aeronautical robotic engineering complexes in cooperative environments, 2017 Tenth International Conference “Management of large-scale system development” (MLSD'2017), (Moscow, Russia, 2-4 Oct. 2017). Publisher: IEEE. Date Added to IEEE Xplore: 16 November 2017. DOI: 10.1109/MLSD.2017.8109591. IEEE Xplore Digital Library available at: http://ieeexplore.ieee.org/document/8109591


Download

mai.ru — informational site MAI

Copyright © 2000-2022 by MAI

Вход