A technique for approximate stresses evaluation in a thick-wall composite axisymmetric structure


Babaitsev A. V.1*, Burtsev A. Y.2, Rabinsky L. N.1**, Solyaev Y. O.3***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Tula State University, TulGU, 92, Lenin av., Tula, 300012, Russia
3. Institute of Applied Mechanics of Russian Academy of Science, IPRIM RAS, 7, Leningradskiy Prospekt, Moscow, 125040, Russia

*e-mail: ar77eny@gmail.com
**e-mail: rabinskiy@mail.ru
***e-mail: yurysolyaev@ya.ru


Design calculations based on one-dimensional models of rods with variable cross-section can be effectively applied in the design of structures with large elongation. Similar one-dimensional models are employed, for example, for the design of columns, supports, rocket systems, etc. Such models allow, as a first approximation, evaluate the strength of a structure and determine loading conditions of its elements (compartments, sections) for further refined numerical calculations.

The article presents an option of the strength analysis performing method for a thick-walled axisymmetric structure consisting of a metal core (reinforcing component) and an external thick-walled shell of composite material. The structure is loaded with a linear load distributed along a part of its length associated with the acting external pressure and inertial forces associated with the resulting acceleration. The technique is based on a one-dimensional model of a composite rod with variable cross-section, approximately accounting for transverse deformations, which is necessary when analyzing a thick-walled structure operating under pressure. In the proposed approach, the geometry of the product is splitted into sections and approximated by fragments in the form of truncated cones and, in particular case, cylinders. As the result of the calculations, the distribution of the normal longitudinal tensile / compression stresses in the outer shell and in the reinforcing rod is being determined, and the tangential stresses at the boundary of their contact are being estimated. As the result of the test calculations, a reasonably good consistency of the proposed one-dimensional analytical calculation method with the numerical result obtained by refined finite element modeling for normal stresses acting in the rod and in the shell in the direction of the symmetry axis of the structure is shown. Numerical calculations were performed in the Comsol Multiphisics system using in a axisymmetric formulation. For tangential stresses at the contact boundary between the rod and the shell, approximate estimates, which quantitatively differ rather strongly from the numerical modeling, are obtained, and, therefore, require developing a refined technique accounting for the uneven normal and tangential stresses distribution in the radial direction.


composite structures, variable cross-section rod, design calculation, thick-wall composite


  1. Mossakovskii V.I. Prochnost’ raketnykh konstruktsii (Strength of Rocket Structures), Moscow, Vysshaya shkola, 1990, 359 p.

  2. Volchkov O.D. Prochnost’ raket-nositelei (Strength of Boosters), Moscow, Izd-vo MAI, 2007, ch.1. 784 p.

  3. Dudchenko A.A., Lur’e S.A., Solyaev Yu.O. et al. Konstruktsii iz kompozitsionnykh materialov, 2016, no. 1 (141), pp. 3 — 11.

  4. Babaitsev A.V., Zotov A.A. Tekhnologiya metallov, 2018, no. 11, pp. 16 — 20. DOI: 10.31044/1684-2499-2018-11-16-20

  5. Dobryanskii V.N., Rabinskii L.N., Radchenko V.P., Solyaev Yu.O. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=98252

  6. Vaysfeld N.D., Reut A.V. The axisymmetrical mixed problem of elasticity for the truncated circular cone with edge with regard of its proper weight, Vestnik Odesskogo Universiteta. Matematika i Mechanica, 2012, vol. 17, no. 3, pp. 99 — 107.

  7. Khomsuridze N.G. The thermoelastic equilibrium of the conical bodies, Prikladnaya matematika i mechanica, 2003, vol. 67, no. 3, pp. 124 — 133.

  8. Klemm J.L., Fernandes R. The Three-Dimensional Hollow or Solid Truncated Cone Under Axisymmetric Torsionless End Loading, Journal of Applied Mechanics, 1976, vol. 43 (1), pp. 59 — 63. Doi:10.1115/1.3423796

  9. Uspenskii A.A. State of stress of an anisotropic cone under an axisymmetric load, Soviet Applied Mechanics, 1977, vol. 13, no. 5, pp. 436 — 440. Doi:10.1007/bf00901796

  10. Vaisfel’d N.D., Popov G.Ya., Reut V.V. The axisymmetric mixed problem of elasticity theory for a cone clamped along its side surface with an attached spherical segment, Journal of Applied Mathematics and Mechanics, 2013, vol. 77, no. 1, pp. 70 — 78, https://doi.org/10.1016/j.jappmathmech.2013.04.009

  11. Vaisfel’d N.D., Reut A.V. Visnik Kiїevs’kogo natsional’nogo universitetu imeni Tarasa Shevchenka, Seriya: Fiziko-matematicheskie nauki, 2013, no. 3, pp. 93 — 97.

  12. Reut A.V. The axisymmetrical problem on the stress state of the truncated hollow cone under the external loading, Vіsnik Odes’kogo natsіonal’nogo unіversitetu. Matematika. Mekhanіka, 2013, vol. 18, no. 3, pp. 102 — 108.

  13. Kamran A., Manouchehr S., Mehdi A. Elastic solution of a two-dimensional functionally graded thick truncated cone with finite length under hydrostatic combined loads, Acta Mechanica, 2011, vol. 217, no. 1 — 2, pp. 119 — 134.

  14. Kamran A., Manouchehr S., Mehdi A. Dynamic analysis of a functionally graded thick truncated cone with finite length, International Journal of Mechanics and Materials in Design, 2010, vol. 6, no. 4, pp. 367 — 378.

  15. Sedov L.I. Mekhanika sploshnoi sredy (Continuum mechanics), Moscow, Nauka, 1970, vol. 2, 492 p.

  16. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58589

  17. Afanas’ev A.V., Dudchenko A.A., Rabinskii L.N. Trudy MAI, 2010, no. 37, available at: http://trudymai.ru/eng/published.php?ID=13425

  18. Christensen R.M. 2013 Timoshenko Medal Award Paper — Completion and Closure on Failure Criteria for Unidirectional Fiber Composite Materials, Journal of Applied Mechanics, 2013, vol. 81 (1). Doi.org/10.1115/1.4025177.

  19. Bazle A Gama, John W. Gillespie Jr, Hassan Mahfuz, Roshan P Raines, Anwarul Haque, Shaik Jeelani, Travis A Bogetti, Bruce K Fink High Strain-Rate Behavior of Plain-Weave S-2 Glass/Vinyl Ester Composites, Journal of Composite Materials, 2001, vol. 35 (13), pp. 1201 — 1228: http://doi.org/10.1106/13MY-YTGH-QE7E-6V8D.

  20. Barashkov V.N. Izvestiya Tomskogo politekhnicheskogo universiteta, 2004, vol. 307, no. 4, pp. 22 — 27.


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI