Experimental study of wingtip vortices behind the finite-span wing


Stepanov R. P.1*, Kusyumov A. N.1**, Mikhailov S. A.1***, Mikhailov S. A.2****

1. Kazan National Research Technical University named after A.N. Tupolev, KNRTU-KAI, 10, Karl Marks str., Kazan, 420111, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: robert_stepanov@inbox.ru
**e-mail: postbox7@mail.ru
***e-mail: michailov@kai.ru
****e-mail: Sergey.Mikhaylov@kai.ru


The article presents the results of experimental study of wingtip vortices behind a rectangular wing of a finite-span in the near field (at a distance of 0.5 to 4.2 wing chords length from the trailing edge). A rectangular wing with a modified Göttingen 387 airfoil and aspect ratio of 7.8 was used in the experiments.

During the experiments, the Reynolds number corresponded to Re = 350000, and an incoming flow velocity was set to 28 m/s. Wing tip vortices were studied at various angles of attack in the range from —6° to +18°. Experiments were performed in T-1K wind tunnel of Kazan National Research Technical University named after A.N. Tupolev. The wingtip vortices study was performed by the velocity fields, obtained with PIV-system. Parameters identification of the vortex core was performed employing Cross-Sectional Lines method and Q-criterion, and demonstrated good agreement. The article presents dependencies of the core size changing on the angle of attack and a distance to the core section. It is shown that the vortex core size increases away from the wing the wing and the angle of attack increasing. The dependencies of the vortex core square on the Q value were plotted. It was established that the wingtip vortex bunch stranding at large angles of attack occurs at the shorter distances, than at the smaller angles of attack. The article demonstrates that maximum value of relative circulation is almost constant and independent from the angle of attack value.


wingtip vortices, near field, finite-span wing


  1. Ginevskii A.S., Zhelannikov A.I. Vikhrevye sledy samoletov (Aircraft vortex trails), Moscow, Fizmatlit, 2008, 172 p.

  2. Heyes A.L., Smith D.A.R. Modification of a wing tip vortex by vortex generators, Aerospace Science and Technology, 2005, vol. 9, no. 6, pp. 469 — 475. DOI: 10.1016/j.ast.2005.04.003

  3. Golovkin M.A., Golovkina E.V. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74692

  4. Vyshinskii V.V., Sudakov G.G. Trudy MFTI, 2009, vol. 1, no. 3, pp. 73 — 93.

  5. Gaifullin A.M., Sviridenko Yu.N. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Mekhanika zhidkosti i gaza, 2011, no. 4 (3), pp. 697 — 699.

  6. Holzäpfel F., Kladetzke J. Assessment of Wake-Vortex Encounter Probabilities for Crosswind Departure Scenarios, Journal of Aircraft, 2011, vol. 48, pp. 812 — 822. DOI: 10.2514/1.C000236.

  7. Zudov K.A., Kudrov M.A., Malyutkina K.I., Kharchilava Yu.E. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70423

  8. Sharov V.D. Trudy MAI, 2012, no. 58, available at: http://trudymai.ru/eng/published.php?ID=33287

  9. Hallock J.N., Greene G.C., Burnham D.C. Wake Vortex Research-A Retrospective Look, Air Traffic Control Quarterly, 1998, vol. 6, pp. 161 — 178. DOI: 10.2514/atcq.6.3.161.

  10. Gerz T., Holzäpfel F., Darracq D. Commercial aircraft wake vortices, Progress in Aerospace Sciences, 2002, vol. 38, no. 3, pp. 181 — 208. DOI: 10.1016/S0376-0421(02)00004-0.

  11. Hallock J.N., Holzäpfel F. A review of recent wake vortex research for increasing airport capacity, Progress in Aerospace Sciences, 2018, vol. 98, pp. 27 — 36. DOI: 10.1016/j.paerosci.2018.03.003.

  12. Rossow V.J. Lift-generated vortex wakes of subsonic transport aircraft, Progress in Aerospace Sciences, 1999, vol. 35, no. 6, pp. 507 — 660. DOI: 10.1016/S0376-0421(99)00006-8.

  13. Sun R., Daichin. Experimental investigation on tip vortices and aerodynamics, Theoretical and Applied Mechanics Letters, 2011, vol. 1, no. 3, pp. 032001-1—032001-6. DOI: 10.1063/2.1103201

  14. Ahmadi-Baloutaki M., Carriveau R., Ting D.S.-K. An experimental study on the interaction between free-stream turbulence and a wing-tip vortex in the near-field, Aerospace Science and Technology, 2015, vol. 43, pp. 395 — 405. DOI: 10.1016/j.ast.2015.03.021.

  15. Spalart P.R. Airplane trailing vortices, Annual Review of Fluid Mechanics, 1998, vol. 30, pp. 107 — 138. DOI: 10.1146/annurev.fluid.30.1.107.

  16. Rossow V. Lift-Generated Vortex Wake of Subsonic Transport Aircraft, Progress in Aerospace Sciences, 1999, vol. 35, no. 6, pp. 507 — 660. DOI:10.1016/S0376-0421(99)00006-8.

  17. Green S., Acosta A. Unsteady Flow in Trailing Vortices, Journal of Fluid Mechanics, 1991, vol. 227, pp. 107 — 134. DOI:10.1017/S0022112091000058.

  18. Phillips W., Graham J. Reynolds-Stress Measurements in a Turbulent Trailing Vortex, Journal of Fluid Mechanics, 1984, vol. 147, pp. 353 — 371. DOI:10.1017/S0022112084002123.

  19. Zilliac G.G., Chow J.S., Dacles-Mariani J., Bradshaw P. Turbulent Structure of a Wingtip Vortex in the Near Field, AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 6-9 July 1993, AIAA Paper 1993-3011, 1993. DOI: 10.2514/6.1993-3011.

  20. Dacles-Mariani J., Zilliac G., Chow J., Bradshaw P. Numerical/Experimental Study of a Wingtip Vortex in the Near Field, AIAA Journal, 1995, vol. 33, no. 9, pp. 1561 — 1568. DOI: 10.2514/3.12826.

  21. Chow J.S., Zilliac G.G., and Bradshaw P. Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex, AIAA Journal, 1997, vol. 35, no. 10, pp. 1561 — 1567. DOI: 10.2514/2.1.

  22. Lee T., Pereira J. Nature of Wakelike and Jetlike Axial Tip Vortex Flows, Journal of Aircraft, 2010, vol. 47, no. 6, pp. 1946–1954. DOI:10.2514/1.C000225.

  23. Giuni M., Green R.B. Vortex Formation on Squared and Rounded Tip, Aerospace Sciences and Technology, 2013, vol. 29, no. 1, pp. 191 — 199. DOI: 10.1016/j.ast.2013.03.004.

  24. Chernyshev S.L., Gaifullin A.M., Sviridenko Yu.N. Civil aircraft vortex wake. TsAGI׳s research activities, Progress in Aerospace Sciences, 2014, vol.71, pp. 150 — 166. DOI: 10.1016/j.paerosci.2014.06.004.

  25. Vyshinskii V.V., Zamyatin A.N., Sudakov G.G. Tekhnika vozdushnogo flota, 2006, no. 3-4, pp. 25 — 38.

  26. Tombach I. Observations of Atmospheric Effects on Vortex Wake Behavior, Journal of Aircraft, 1973, vol. 10, pp. 641 — 647. DOI: 10.2514/3.60276.

  27. Hecht A.M., Bilanin A.J., Hirsh J.E. Turbulent Trailing Vortices in Stratified Fluids, AIAA Journal, 1981, vol. 19, pp. 691 — 698. DOI: 10.2514/3.50992.

  28. Sarpkaya T. Trailing Vortices in Homogeneous and Density-Stratified Media, Journal of Fluid Mechanics, 1983, vol. 136, pp. 85 — 109. DOI: 10.1017/S0022112083002074.

  29. Sarpkaya T., Daly J.J. Effect of Ambient Turbulence on Trailing Vortices, Journal of Aircraft, 1987, vol. 24, pp. 399 — 404. DOI: 10.2514/3.45459.

  30. Liu H. -T. Effects of Ambient Turbulence on the Decay of a Trailing Vortex Wake, Journal of Aircraft, 1992, vol. 29, pp. 255 — 263. DOI: 10.2514/3.46153.

  31. Robins R.E., Delisi D.P. Numerical Study of Vertical Shear and Stratification Effects on the Evolution of a Vortex Pair, AIAA Journal, 1990, vol. 28, no. 4, pp. 661. DOI: 10.2514/3.10444.

  32. Proctor F.H. Numerical Simulation of Wake Vortices Measured During the Idaho Fall and Memphis Field Programs, 14th Applied Aerodynamics Conference, 17 — 20 June 1996, pp. 943. DOI: 10.2514/6.1996-2496.

  33. Shaohua Shen, Feng Ding, Jongil Han, Yuh-Lang Lin, S. Pal Arya, F. H. Proctor, Numerical Modeling Studies of Wake Vortices: Real Case Sim ulations, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11-14, 1999, Reno, NV (AIAA 99-0755). DOI: 10.2514/6.1999-755.

  34. Zherekhov V.V., Pakhov V.V. Materialy XI Mezhdunarodnoi Chetaevskoi konferentsii, Kazan’, 2012, vol. 1, pp. 161 — 168.

  35. Valiev M., Stepanov R., Salakhov V., Zherekhov V., Barakos G.N. Analytical and experimental study of the integral aerodynamic characteristics of low-speed wind turbines, Aeronautical Journal, 2014, vol. 118, pp. 1229 — 1224. DOI: 10.1017/S0001924000009957.

  36. Raffel M., Willert C.E., Wereley S.T., Kompenhans J. Particle Image Velocimetry: A Practical Guide, 2nd edition, 2017. ISBN-10: 3642431666.

  37. Haller G. An objective definition of a vortex, Journal of Fluid Mechanics, 2005, vol. 525, pp. 1199 — 1207. DOI: 10.1017/S0022112004002526.

  38. Vollmers H. Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data, Measurement Science and Technology, 2001, vol. 12, no. 8, pp. 119 — 1207. DOI: 10.1088/0957-0233/12/8/329.

  39. Anderson J.D. Fundamentals of Aerodynamics, Boston, McGraw-Hill, 6th ed., 2001, 1106 p.

  40. Edstrand A., Davis T., Schmid P., Taira K., Cattafesta L. On the mechanism of trailing vortex wandering, Journal of Fluid Mechanics, 2016, vol. 801, R1. DOI:10.1017/jfm.2016.440.

  41. Jimenez-Garcia A., Barakos G.N. Numerical Simulations on the PSP Rotor Using HMB3, AIAA Science and Technology Forum and Exposition (SciTech2018), Kissimmee, FL, USA, 8 — 12 Jan 2018. DOI:10.2514/6.2018-0306.


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI