Dynamics modelling of the landing platform two-link mechanism


Gerasimchuk V. V.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

e-mail: gerasimchuk@laspace.ru


The article is devoted to the dynamics study of the two-link mechanism of the landing platform of the landing module. Federal space program includes the planet rover delivery on the planets under exploration by landing modules. An important scientific problem on rational selection of design solution for studying the deployment dynamics of the multilink mechanism of the landing platform gangway is formulated.

The author analyzes the existing methods of compiling the multi-link mechanisms motion dynamic equations, and chooses the of Denavit-Hartenberg matrix representation together with the Lagrange-Euler method for complete description of the mechanism motion. The movement dynamics is represented as a two-link mechanism with rotational joints. Further, we formulate a direct problem of kinematics to determine the vector of generalized accelerations for a given force and moments. A system of nonlinear differential equations of motion is being derived, which is numerically integrated, and modeled in the EULER software complex. The EULER software package was developed by NPO Avtomatika and meant for mathematical modeling of multi-component mechanical systems dynamics. The results are compared, and conclusion is made on the sufficient convergence of the results (the discrepancy does not exceed 15%).

The author draws attention to the fact that nonlinearity generates heterogeneity of dynamic, elastic and velocity properties of the mechanism and the variability of parameters in nonlinear equations. This feature is clearly manifested in the positions of the multiplicity π of the generalized coordinates and at their zero values. When φ1 = φ2 = 0, the mechanism is pulled into a line, or if φ multiples of π and the links are folded, a loss of controllability may occur. The author explains this by the fact that the choice of the conceptual model of the mechanism and the formation of its kinematic design model is an independent task.

Approbation of the developed system of non-linear equations with the results of the work on the transformable structures of the EXOMARS SPACECRAFT landing platform was performed additionally. A conclusion was made on the model suitability at the outline design and determining the layout and main kinematic characteristics of the mechanism of the landing platform gangway of the landing module of the interplanetary space station.


direct problem of kinematics, multi-link mechanism, spacecraft


  1. Poduraev Yu.V. Mekhatronika: osnovy, metody, primenenie (Mechatronics: fundamentals, methods and applications), Moscow, Mashinostroenie, 2007, 256 p.

  2. Fu K.S. Learning Control Systems and Intelligent Control Systems: Au Interseetion of Artificial Intelligence and Automatic Control, IEEE Transactions on Automatic Control, 1971, vol. 16, issue 1, pp. 70 – 72. DOI: 10.1109/TAC.1971.1099633

  3. Lagrange J.L. Analytical mechanics, Boston Studies in the Philosophy of Science, 2001, Springer, 640 p.

  4. Jubien A., Gautier M., Janot A. Dynamic identification of theKuka LWR robot using motor torques and joint torque sensors data, 19th IFAC World Congress, At Cape Town, 2014, DOI: 10.3182/20140824-6-ZA-1003.01079

  5. Nizametdinov F.R., Sorokin F.D. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98753

  6. Fu K., Gonsales R., Li K. Robototekhnika (Robotics), Moscow, Mir, 1989, 624 p.

  7. Kane T., Dynamics, New York, Holt, Rihehart and Wiston, 1968, 310 p.

  8. Choset H.M. et al. Principles of robot motion: theory, algorithms, and implementation, Cambridge, MIT press, 2005, 603 p.

  9. Usoro P.B., Nadira R., Mahil S.S. A Finite Element/Lagrange Approach to Modeling Light Weight Flexible Manipulators, ASME Journal of Dynavic Systems, Measurement and Control, 1986, vol. 108, no. 3, pp. 198 – 205.

  10. Gerasimchuk V.V. Dvoinye tekhnologii, 2019, no. 2 (87), pp. 44 – 48.

  11. Leont’ev V.A., Smirnov A.S., Smol’nikov B.A. Robototekhnika i tekhnicheskaya kibernetika, 2018, no. 1(18), pp. 56 – 60.

  12. Jan Swevers, Walter Verdonck, Joris De Schutter. Dynamic model identification for industrial robots, IEEE Control Systems, 2007, vol. 27, issue 5, pp. 58 – 71. DOI: 10.1109/MCS.2007.904659

  13. Landau L.D., Lifshitz E.M. Mechanics. Course of Theoretical Physics. Vol. 1. Oxford and Boston, Butterworth-Heinenann, 1976, 224 p.

  14. Efanov V.V., Gerasimchuk V.V., Kuznetsov D.A., Mit’kin A.S., Telepnev P.P., Tsyplakov A.E. Polet, 2017, no. 8, pp. 19 – 25.

  15. Gerasimchuk V.V., Efanov V.V., Kuznetsov D.A., Telepnev P.P. Kosmonavtika i raketostroenie, 2018, no. 3, pp. 103 – 110.

  16. Vernigora L.V., Kazmerchuk P.V. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105759

  17. Arkhangelov A.G., Rulev S.V., Ermakov V.Yu., Gerasimchuk V.V. Programma upravleniya magnitozhidkostnoi sistemoi vibrozashchity. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2016616337, 2018.

  18. Maxime Gautier, Alexandre Janot, and Pierre-Olivier Vandanjon. A new closed-loop output error method for parameter identification of robot dynamics, IEEE Transactions on Control Systems Technology, 2013, vol. 21(2), pp. 428 – 444.

  19. Boikov V.G., Yudakov A.A. Informatsionnye tekhnologii i vychislitel’nye sistemy, 2011, no. 1, pp. 42 – 52.

  20. Boiko S.O. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85702

  21. Gorovtsov V.V., Zhiryakov A.V., Telepnev P.P., Petrov Yu.A., Bernikov A.S. Vestnik NPO im. S.A. Lavochkina, 2016, no. 4, pp. 75 – 80.


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI