Life cycle durability prediction of high-pressure pipelines under the impact of low-cycle loads


DOI: 10.34759/trd-2019-108-2

Аuthors

Phone H. K.*, Sysoev E. O.**, Kuznetsov E. A.***, Min K. H.****

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: phonehtetkyaw18@gmail.com
**e-mail: fks@knastu.ru
***e-mail: workegor@mail.ru
****e-mail: minkohlaing53@gmail.com

Abstract

Nowadays, high-pressure pipelines are widely employed aircraft and machine building in hydro-gas and fuel systems. While machines and mechanisms production and operation much attention is paid to control of high-pressure pipelines made of high-strength steel, as well as aluminum and titanium alloys. Pipelines operate under conditions of low-cycle loading impacts from the internal pressure, stretching and torsion, which affect significantly on their long-term strength at various types of the stress-strain state and shapes of loading cycle. Under real operation conditions, these structural elements operate under both linear and complex stressed states. A serious problem of materials consumption and cost reducing arises in the course of designing, ensuring herewith the strength and durability of the part. For the structures failures prevention, overstated strength margins are specified, and, as a consequence, increase their materials consumption and cost. However, with this approach microstructure damages of the material and abrupt change of the material strength while damage accumulation while fabrication and operation are not accounted for.

The problem solution consists in setting quantitative and qualitative dependencies of the material microstructure changing and long-term strength, which defines structural materials durability and residue resource of object under operation.

The acoustic emission (AE) method is the most suitable for these changes recording. The AE reflects microstructure reconfigurations of structural materials under the impact of any loads, but calculations should account for the most informative AE signals from the defects, which are not recovered during further operation, with fractal dimension of attractor signal of 1 ≤ D2attr ≤ 6 .

The article considers technique of durability forecasting of the pipelines under the impact of low-cycle loads at different loading trajectories in the two-dimensional stress space in a plane stress-strain state employing the acoustic emission method. The problem of determining the high-pressure pipelines durability depends on the dangerous damages accumulation in the structural material of pipelines as the result of plastic deformations accumulated from low-cycle loads, characterized by high stresses, various cycle forms and loading trajectories. The residual life evaluation of the existing pipelines is currently based on the latest achievements in the field of fracture mechanics, metallurgy, non-destructive testing methods, and current design standards for strength and conditions of actual operation. The existing methods herewith do not account for microstructure evolution of the structural material in real time. The acoustic emission method allows accounting for transformation of the structural material microstructure in real time, and predict the residual life.

The proposed method allows significant reduction of the laboratory tests number for predicting the high-pressure pipelines durability under the impact of low-cycle loads at various loading trajectories.

Keywords:

durability, low-cycle loading, plane stress-strain state, loading path, high-pressure pipelines, acoustic emission

References

  1. Ser’eznov A.N., Stepanova L.N., Murav’ev V.V. et al. Diagnostika ob"ektov transporta metodom akusticheskoi emissii (Diagnostics of transport objects by acoustic emission method), Moscow, Mashinostroenie, 2004, 368 p.

  2. Semashko N.A., Shport V.I., Mar’in B.N. et al. Akusticheskaya emissiya v eksperimental’nom materialovedenii (Acoustic emission in experimental material science), Moscow, Mashinostroenie, 2002, 240 p.

  3. Sysoev O.E., Bilenko S.V. Opredelenie predel’nykh sostoyanii konstruktsionnykh materialov s ispol’zovaniem metodov nelineinoi dinamiki (Determining marginal state of materials by non-linear dynamics method), Vladivostok, Dal’nauka, 2013, 150 p.

  4. Sysoev O.E., Kolykhalov D.G., Kuznetsov E.A., Belykh S.V. Forecasting Durability and Cyclic Strength of Aluminum Alloy AA2219 Using Fractal Analysis of Acoustic Emission, IV Sino-Russian ASRTU Symposium on Advanced Materials and Materials and Processing Technology, 2016, KnE Materials Science, pp. 161 – 167. DOI 10.18502/kms.v1i1.579.

  5. Sysoev O.E., Bilenko S.V. Uchenye zapiski KnAGTU, 2012, no. 3, pp. 107 – 115.

  6. Phone Htet Kyaw, Sysoyev O.E, Kuznetsov E.A, Marin B.N. Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded, ICTTE 2018, Conference Paper, December 2018, pp. 213 – 217. DOI: 10.1145/3321619.3321685

  7. Sysoev O.E., Kuznetsov E.A., Kurinyi V.V. Uchenye zapiski KnAGTU, 2012, no. 1, pp. 106 – 112.

  8. Sysoev O.E. New Ideas for Monitoring the Steel Structures of Buildings and Surface facilities in the Extreme Limit State, Journal of shenyang jianzhu university, 2011, vol. 27, no. 6, pp. 1099 – 1102.

  9. Kuznetsov E.A., Sysoev O.E., Kolykhalov D.G. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70409

  10. Kolykhalov D.G., Sysoev O.E., Ivanov I.N. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74709

  11. Bashkov O.V., Popkova A.A., Bashkova T.I., Sharkeev Yu.P. The study of staging of the fatigue damage accumulation in the structured titanium samples by acoustic emission method, Tsvetnye Metally, 2017, vol. 9, pp. 84-90. DOI: 10.17580/tsm.2017.09.12

  12. Bashkov O.V., Popkova A.A., Sharkeev Yu.P., Panin S.V., and Eroshenko A.Yu. Acoustic emission analysis of fatigue damages of titanium alloys, AIP Conference Proceedings 1909, 020012, 2017. DOI: 10.1063/1.5013693

  13. Rybaulin A.G., Sidorenko A.S. Trudy MAI, 2015, no. 79, available at: http://trudymai.ru/eng/published.php?ID=55786

  14. Maslov G.A., Lapushkin V.N. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56918

  15. Ibragimov A.A. Metody prognozirovaniya dolgovechnosti truboprovodov s uchetom korrozii i peremennykh napryazhenii (Pipelines life cycle prediction methods with regard for corrosion and variable stresses), Tyumen’, TyumGNGU, 2011, 76 p.

  16. Lee C.K., Scholey J.J., Wilcox P.D., Wisnom M.R., Friswell M.I., Drinkwater B.W. ’Guided Wave Acoustic Emission from Fatigue crack growth in Aluminium Plate’, Advenced Material Research, 2006, vol. 13 – 14, pp 23 – 28.

  17. Stepanova L.N., Bobrov A.L., Kanifadin K.V., Chernova V.V. Deformatsiya i razrushenie materialov, 2014, no. 6, pp. 41 – 45.

  18. Ser’eznov A.N., Stepanova L.N. Polet, 2004, no. 3, pp. 3 – 7.

  19. Mar’in B.N. Izgotovlenie truboprovodov gidrogazovykh sistem letatel’nykh apparatov (Production of pipelines for hydrogas systems of aircraft), Moscow, Mashinostroenie, 1988, 400 p.

  20. Lubkov N.V., Spiridonov I.B., Stepanyants A.S. Trudy MAI, 2016, no. 85, available at: http://trudymai.ru/eng/published.php?ID=65216

  21. Polonik E.N., Surenskii E.A., Fedotov A.A. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=67799

  22. Shakirtov M.M. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=72589

  23. Khokhlov A.V. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75559


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход