Characteristics Optimization of an Aviation Synthetic Aperture Radar and Its Micro-Navigation System


DOI: 10.34759/trd-2019-108-10

Аuthors

Starovoitov E. I.*, Yurchik I. A.

Radio Engineering Corporation “VEGA”, 34, Kutuzovskiy prospekt, Moscow, 121170, Russia

*e-mail: vega.su

Abstract

Falling of separable modules of launch vehicles occurs after space launches. Detected separable modules of launch vehicles are being evacuated from the impact area for further utilization. Search operations in a hard-to-reach terrain may take a good deal of time and require heavy spending. The authors suggest employing airborne synthetic aperture radar (SAR) for operational search and detection of separable modules of launch vehicles. This radar characteristics may differ from the analogs at hand.

An inertial micro-navigation system is employed to improve data quality being acquired by SAR. Currently, micro-navigation systems are employed in a great number of airborne SARs

Measuring error of the micro-navigation system is determined primarily by the the errors of its sensitive elements (accelerometers and gyros).

The types of sensitive elements applied in inertial units, and gyro errors correcting techniques of micro-navigation system, accumulated while long-term operation, are described. Analysis of requirements placed to micro-navigation system with inertial blocks based on laser gyros was performed.

For the assessment, it is assumed, that the aircraft-carrier flight is performed at an altitude of 9 km with a speed of 200 m/s. Characteristics of SAR, operating in Ku, X and C frequency bands, and sensitive elements of the units were determined for this initial data.

Based on Pareto sets, a technique for optimizing the inertial block mass (with account for the laser gyroscopes drift) of the micro-navigation system, and permissible error in the radial velocity measuring was developed. The same technique may be employed to optimize the inertial block size.

The results of this work may be used for developing airborne various purpose SARs.

Keywords:

synthetic aperture radar, micro-navigation system, laser gyro, aircraft, detection, separable modules of launch vehicles, optimization

References

  1. Avdoshin V.V., Dvurechenskii A.I. Trudy vserossiiskoi nauchno-prakticheskoi konferentsii “Prioritetnye zadachi obespecheniya bezopasnosti i ekologicheskogo soprovozhdeniya puskov RN tipa „Soyuz“, napravleniya ikh realizatsii”, Barnaul, Institut vodnykh i ekologicheskikh problem SO RAN, 2017, pp. 139 – 153.

  2. Bulekbaev D.A. Vooruzhenie i ekonomika, 2013, no. 4, pp. 20 – 25.

  3. Eliseikin S.A., Podrezov V.A., Poluarshinov A.M., Shirshov N.V. Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo, 2016, no. 655, pp. 107 – 113.

  4. Dmitriev O.Yu., Sitnikova I.P. Trudy vserossiiskoi nauchno-prakticheskoi konferentsii “Prioritetnye zadachi obespecheniya bezopasnosti i ekologicheskogo soprovozhdeniya puskov RN tipa „Soyuz“, napravleniya ikh realizatsii”, Barnaul, Institut vodnykh i ekologicheskikh problem SO RAN, 2017, pp. 48 – 57.

  5. Antipov V.N., Vikent’ev A.Yu., Koltyshev E.E. et al. Aviatsionnye sistemy radiovideniya (Aviation radio-vision systems), Мoscow, Radiotekhnika, 2015, 648 p.

  6. Loginova E.O. Nauchnaya sessiya GUAP, Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2016, Ch.1, pp. 119 – 125.

  7. Gavrilenko Yu.N., Petrushin A.G., Kovalev K.V. Naukovi pratsi UkrNDMI NAN Ukraïni, 2013, no. 12, pp. 366 – 381.

  8. Braitkraits S.G., Il’in E.M., Martyshin A.V., Polubekhin A.I., Savost’yanov V.Yu., Samarin O.F., Yurin A.D., Khomyakov K.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 11, pp. 313 – 326.

  9. Chernodarov A.V., Patrikeev A.P., Bilik V.V., Kovregin V.N. XVIII Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam, Saint Petersburg, TsNII “Elektropribor”, 2011, pp. 185 – 194.

  10. Chernodarov A.V., Patrikeev A.P., Kovregin V.N., Kovregina G.M., Merkulova I.I. Nauchnyi vestnik MGTU GA, 2017, vol. 20, no. 1, pp. 222 – 231.

  11. Karpov O.A., Titov M.P., Tsvetkov O.E. II Vserossiiskie Armandovskie chteniya “Radiofizicheskie metody v distantsionnom zondirovanii sred”, Murom – 2012, Murom, IPTs MI VlGU, 2012, pp. 532 – 537.

  12. Xinhua M., Zhu D., Zhang Y. Knowledge-aided two-dimensional autofocus for synthetic aperture radar, IEEE Radar Conference (RadarCon13), 2013, pp 1 – 6. DOI: 10.1109/RADAR.2013.6585964

  13. Torgrimsson J., Dammert P., Hellsten H., Ulander L.M.H. Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing, Geoscience and Remote Sensing, IEEE Transactions, 2014, vol. 52, no. 10, pp. 6674 – 6687. DOI: 10.1109/TGRS.2014.2300347

  14. Likhachev V.P., Sidorenko S.V. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=92074

  15. Petrov Yu.V., Byzov A.N., Petrov N.Yu., Yukhno S.A. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: sistemnyi analiz i informatsionnye tekhnologii, 2015, no. 1, pp. 67 – 75.

  16. Il’in E.M., Kozorez D.A., Krasil’shchikov M.N., Polubekhin A.I., Savost’yanov V.Yu., Sypalo K.I. Vestnik SibGUTI, 2016, no. 3, pp. 33 – 45.

  17. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system (Fundamentals of Strapdown Inertial Navigation Systems Design), Saint Petersburg, TsNII “Elektropribor”, 2009, 280 p.

  18. Kivokurtsev A.L. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya, posvyashchennaya 50-letiyu Irkutskogo filiala MGTU GA “Aktual’nye problemy i perspektivy razvitiya grazhdanskoi aviatsii Rossii”, Irkutsk, Irkutskii filial MGTU GA, 2017, pp. 79 – 87.

  19. Golyaev Yu.D., Kolbas Yu.Yu., Konovalov S.F., Solov’eva T.I., Tomilin A.V. Sistemotekhnika: sistemnyi problemy nadezhnosti, kachestva i informatsionnykh tekhnologii, 2012, no. 10, available at http://systech.miem.edu.ru/?q=21

  20. Azarova V.V., Golyaev Yu.D., Savel’ev I.I. Kvantovaya elektronika, 2015, vol. 45, no. 2, pp. 171 – 179.

  21. Kuznetsov A.G., Molchanov A.V., Chirkin M.V., Izmailov E.A. Kvantovaya elektronika, 2015, vol. 45, no. 1, pp. 78 – 88.

  22. Korkishko Yu.N., Fedorov V.A., Prilutskii V.E., Ponomarev V.G., Morev I.V., Skripnikov S.F., Khmelevskaya M.I., Buravlev A.S., Kostritskii S.M., Fedorov I.V., Zuev A.I., Varnakov V.K. Giroskopiya i navigatsiya, 2014, no. 1(84), pp. 14 – 26.

  23. Us N.A., Zadorozhnii S.P. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98922

  24. Krylov A.A., Korniyuk D.V. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100768

  25. Bolotnov S.A., Verenikina N.M. Lazernye informatsionno-izmeritel’nye sistemy (Laser information and measuring systems), Moscow, Izd-vo MGTU im. N.E. Baumana, 2005, Part 2, 92 p.

  26. Nogin V.D. Prinyatie reshenii v mnogokriterial’noi srede: kolichestvennyi podkhod (Decision-making in multi-criteria environment: a quantitative approach), Moscow, Fizmatlit, 2004, 176 p.

  27. Chernodarov A.V., Patrikeev A.P., Borzov A.B., Merkulova I.I. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2016, vol. 18, no. 4(7), pp. 1456 – 1464.

  28. Gerasimchuk Yu.N., Braitkraits S.G., Bolotnov S.A., Lyudomirskii M.B., Kayutin I.S., Yamshchikov N.E., Bessonov R.V. Novosti navigatsii, 2011, no. 4, pp. 33 – 39.

  29. Avanesov G.A., Bessonov R.V., Brysin N.N., Kurkina A.N., Liskiv A.S., Lyudomirskii M.B., Kayutin I.S., Yamshchikov N.E., Gavrilov A.L., Gul’tsov S.V., Stepanov Yu.V. 4-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov”, Moscow, Institut kosmicheskikh issledovanii RAN, 2015, pp. 21 – 37.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход