A method for multilayer liquids density and viscosity integrated control in tanks based on ultrasonic sounding

DOI: 10.34759/trd-2019-108-12


Borminsky S. A.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: b80@mail.ru


The article proposes an acoustic method for integrated control of multilayer liquids parameters, based on analysis of ultrasonic signal, propagating from the acoustic emitter upward the tank. The method is based on ultrasonic signal propagation upward the tank from the emitter through a multilayer medium. A line of acoustic receivers herewith is located above the emitter at a predetermined distance. In general, each acoustic receiver contains two channels. The first channel measures acoustic pressure using a piezoelectric transducer. In addition to the transducer, the second channel contains a buffer rod with fixed acoustic parameters, which allows determining the medium density. The fixed distance between the receivers allows determine the sound speed in the given layer. Thus, the media boundary height in the tank is determined by the propagation time. The liquid viscosity is determined by the attenuation. This method improves the accuracy and reliability of parameters measuring, as well as allows eliminate the need for an additional sound-collecting waveguide and reference reflectors, usually employed for high-precision measurements. The absence of the waveguide ensures a number of advantages. Firstly, with the line of receivers application the signal amplitude is much higher, than while employing reference reflectors, which significantly improves noise immunity and accuracy of the incoming acoustic signal front determining. Secondly, multiple signal re-reflections, hampering with the media boundaries positions determining, occur in waveguide measurements in the presence of additional reflectors. Acoustic receivers employed in the proposed method are small-sized and practically do not reflect signals, which allows determining even weakly stratified media. Thirdly, the waveguide presence impedes ensuring the same liquid stratification as in the tank itself especially while fuel drain/fill operation. While liquid adding to the tank, only the lower fraction enters the waveguide, which makes the layered media measurements inaccurate. Fourth, the waveguide absence allows employing practically any frequencies for measuring. The additional effects herewith peculiar to the waveguide sound proliferation do not arise. Structurally, the whole sensor consists of long studs, on which receivers and emitter are located. This design allows quick extraction of the sensor for precipitation removal and other maintenance operations.

The article considered various options of media location relative to acoustic receivers for measurements implementation, on which ground a signal-processing algorithm was developed. The following cases were considered: homogeneous medium with a medium level above the second receiver from the bottom; homogeneous medium with a level between the first and second receivers; several fractions, when each has more than two receivers; two fractions with media boundaries between the first / second and second / third receivers. This combination of the considered options allows obtain all the necessary cases while operation.

A prototype device was developed. With inexpensive components application it demonstrated the errors of combined measurements of level, density and viscosity of 0.1%, 5% and 12% correspondingly.


control, level, density, density, ultrasound, increased accuracy


  1. Lucklum F., Jakoby B. Non-contact liquid level measurement with electromagnetic–acoustic resonator sensors, Measurement Science and Technology, 2009, vol. 20, no, 12, pp. 1 – 5.

  2. Borminskii S.A., Skvortsov B.V. A method of increasing the accuracy of ele ctronic-acoustic instruments for measuring liquid level, Measurement Techniques, 2006, vol. 49, issue 8, pp. 820 – 824.

  3. Tod A. Oblak, Daniel F. Dudek, John R. Smith. Patent 5319972 US, G21C17/035 Ultrasonic liquid level measurement system. Current Assignee Westinghouse Electric Co LLC, 19.10.1992.

  4. Borminskii S.A., Solntseva A.V., Skvortsov B.V. Integrated acoustic monitoring system for jet fuel tanks, Russian Aeronautics, 2017, vol. 60, issue 1, pp. 110 – 115.

  5. Raznoschikov V.V., Demskaya I.A. Trudy MAI, 2012, no 50, available at: http://trudymai.ru/eng/published.php?ID=28611

  6. Terzic J., Nagarajah C.R., Alamgir M. Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM), Sensors and Actuators A: Physical, 2010, vol. 161, no. 1 – 2, pp. 278 – 287.

  7. Lawrence S. Lynnworth Ultrasonic measurements for process control, London, Academic Press, 1989, 683 p.

  8. Stepanov R.N., Kozhevnikov I.A. Trudy MAI, 2018, no. 98, available at: http://trudymai.ru/eng/published.php?ID=90234

  9. Ballantine D.S., Robert Jr., White S.J., Antonio M., Ricco J., Zellers E.T., Frye G.C., Wohltjen H. Acoustic Wave Sensors – Theory, Design, & Physico-Chemical Applications, London, Academic Press, 1996, 451 p.

  10. Skvortsov B.V., Solntseva A.V., Borminskii S.A. Rodionov L.V. Theoretics of Remote Acoustic Monitoring of the Level and Density of Fluid Contacting Media at the Interface, Acoustical Physics, 2/016, vol. 62, no. 6, pp. 747 – 753.

  11. Busurin V.I., Medvedev V.M., Karabitskii A.S., Groppa D.V. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87277

  12. Borminskii S.A., Parshina A.V., Skvortsov B.V. A method for acoustic measurement of length, diameter and internal condition of transportation pipelines, Journal of Physics Conference Series 1111:012079,·December 2018. DOI: 10.1088/1742-6596/1111/1/012079

  13. Nakagawa T., Hyodo A., Osada K., Kurata H., Oho S. Contactless Liquid-Level Measurement With Frequency-Modulated Millimeter Wave Through Opaque Container, Sensors Journal, IEEE, 2012, vol. 13, no. 3, pp. 928 – 933.

  14. Solntseva A.V., Borminskii S.A., Skvortsov B.V. Patent 2614343, G01F 23/296, 05.11.2015.

  15. Borminskii S.A., Solntseva A.V., Skvortsov B.V. Patent 178615, G01F 23/296, 04.04.2017.

  16. R. Schaefer, S. von Dosky, W. Ens. Patent US 2016/0320226A1. Determining height of a liquid level interface in a container from acoustic signal or echo time measurement, Assignee: Siemens Industry, INC. – № 14/860,889, publ. 03.11.2016.

  17. Webster J., Eren H. The Measurement, Instrumentation and Sensors Handbook (Electrical Engineering Handbook), Florida, CRC Press, 2014, 3559 p.

  18. Jyh-Hong Wu, Fang-Pang Lin, Yi-Hao Hsiao, Te-Lin Chung. Patent 8184848B2 US, G06K 9/00, Liquid Level Detection Method, Assignee: National Applied Research Laboratories (TW), № 2010/0322462 A1, 22.05.2012.

  19. Duan W, Kirby R., Prisutova J., Horo K. On the use of power reflection ratio and phase change to determine the geometry of a blockage in a pipe, Applied Acoustics, 2015, no. 87, pp. 190 – 197.

  20. A.R. da Silva, G.P. Scavone, A. Lefebvre. Sound reflection at the open end of axisymmetric ducts issuing a subsonic meanflow: A numerical study, Journal of Sound and Vibration, 2009, vol. 327, pp. 507 – 528.

  21. Ivanov S.V., Mogilevich L.I., Popov V.S. Trudy MAI, 2019, no. 105, available at: http://trudymai.ru/eng/published.php?ID=104003

  22. Dountzev A. Waveguide ultrasonic liquid level transducer for power-generating equipment, Helmholtz-Zentrum Dresden-Rossendorf, available at: https://www.hzdr.de/FWS/FWSF/mtws_00/WS4_Duncev.pdf

  23. Kupnik M., Krasser E., Groschl M. Absolute transit time detection for ultrasonic gas flowmeters based on time and phase domain characteristics, IEEE Ultrasonic Symposium, 2007, pp. 142 – 145.

  24. Liling Ma, Jia Liu, Junzheng Wang. Study of the accuracy of ultrasonic flowmeters for liquid, AASRI Procedia, 2012, no. 3, pp. 14 – 20.

  25. Krasil’nikov V.A., Krylov V.V. Vvedenie v fizicheskuyu akustiku (Introduction to physical acoustics), Moscow, Nauka, 1984, 403 p.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI