On fast solution of the primal biharmonic problem


DOI: 10.34759/trd-2019-108-15

Аuthors

Algazin S. D.1*, Solovyov G. H.2**

1. Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1, prospekt Vernadskogo, Moscow, 119526, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: algazinsd@mail.ru
**e-mail: 19tatarin45@rambler.ru

Abstract

At present, finite element method is the most widespread technique for solving the problems of deformable solid body mechanics. Its shortcomings are well-known and consist in the fact that while displacement approximation by a piecewise-linear function we obtain discontinuous tension. With that, it is worth mentioning that the majority of deformable solid body mechanics problems are described by the equations by the elliptic type equations, which result in smooth solutions. It seems relevant to develop algorithms, which would account for this smoothness. The idea of such algorithms belongs to K.I. Babenko. This idea was put forward by him in the early seventies of the last century. The long-term application of this technique for the elliptic tasks on eigenvalues proved its high efficiency. For example, the task on eigenvalues for the zero equation of Bessel was considered. With this, the first eigenvalue was defined with 22 signs accuracy after the decimal point on the mesh consisting of 22 nodes.

Unlike classical difference methods and finite-element method where dependence of the convergence speed on the number of mesh nodes is of power character, here we have an exponential decrease of error.

The first edition of the book by K.I. Babenko [22] contains the summary of fundamentals of the non-satiable numerical methods. It should be noted, that the studies in computational mathematics in this direction were not sufficiently popularized both in Russia and the world, and they are still practically unknown abroad.

Confirmation to this fact consists in the fact that nowadays an actual “rediscovery” (probably independent) of the same computational techniques started abroad under the name of “spectral” methods (S. Orszag, D. Gotlieb [4], E. Tadmor the USA). It is represented also by (h – p)-specializations of the finite element method (O. Widlund, the USA and S. Schwab, Switzerland), in which the power p of polynomials, employed for functions approximation within one finite element, increases simultaneously with the mesh refinement (i.e. at h → 0). Thus, we can only regret that the works by Babenko and his disciples appeared to be practically forgotten by now.

Keywords:

numerical methods without saturation, h-matrix, circulant

References

  1. Timoshenko S.P., Voinovskii-Kriger S. Plastiny i obolochki (Plates and shells), Moscow, Nauka, 1966, 636 p.

  2. Khappel’ Dzh., Brenner G. Gidrodinamika pri malykh chislakh Reinol’dsa (Hydrodynamics at small numbers), Moscow, Mir, 1976, 630 p.

  3. Postnov V.A., Rostovtsev D.M., Suslov V.P., Kochanov Yu.P. Stroitel’naya mekhanika korablya i teoriya uprugosti (Structural mechanics of ships and theory of elasticity), Leningrad, Sudostroenie, 1987, vol. 2, 416 p.

  4. Slyusarev M.I., Chertov E.Yu., Ryazhskikh V.I. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, vol. 6, no. 7, pp. 165 – 167.

  5. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki (Equations of mathematical physics), Moscow, Nauka, 1977, 742 p.

  6. Bubnov I.G. Morskoi sbornik (Marine collection), vol. 312, no. 10, Saint Petersburg, Izd-vo Morskogo uchenogo komiteta, 1902, pp. 119 – 138.

  7. Chekhov V.N., Pan A.V. Dinamicheskie sistemy, 2008, no. 25, pp. 135 – 144.

  8. Suslov V.P., Kachanov Yu.P., Spikharenko V.N. Stroitel’naya mekhanika korablya na osnove teorii uprugosti (Structural mechanics of a ship based on the theory of elasticity), Leningrad, Sudostroenie, 1972, 720 p.

  9. Selvadurai A.P. Partial differention equations in mechanics 2, NewYork, Springer, 2004, 698 p.

  10. Slyusarev M.I., Chertov E.Yu., Ryazhskikh V.I., Boger A.A. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fizika. Matematika, 2011, no. 1, pp. 214 – 218.

  11. Kobel’kov G.M. Doklady AN SSSR, 1985, vol. 283, no. 1, pp. 539 – 542.

  12. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational methods in liquids dynamics), Moscow, Mir, 1991, vol. 1, 504 p.

  13. Algazin S.D. Chislennye algoritmy klassicheskoi matematicheskoi fiziki (Numerical algorithms of classical mathematical physics), Moscow, Dialog-MIFI, 2010, 240 p.

  14. Galanin M.F., Milyutin D.S., Savenkov E.B. Development, research and application of a finite superelements method for solution biharmonical equation, Moscow, Keldysh Institute preprints, 2005, 26 p.

  15. Ryazhskikh V.I., Slyusarev M.I., Popov M.I. Vestnik Sankt-Peterburgskogo universiteta, 2013, no. 1, pp. 52 – 62.

  16. J. Smith. The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. I, SIAM Journal on Numerical Analysis, 1968, no. 5(2), pp. 323 – 339.

  17. J. Smith. The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. II, SIAM Journal on Numerical Analysis, 1970, no. 7(1), pp. 104 – 111.

  18. Ehrlich L.W. Solving the biharmonic equations as coupled finite difference equations, SIAM Journal on Numerical Analysis, 1971, no. 8(2), pp. 278 – 287.

  19. McLaurin J.W. A general coupled equation approach for solving the biharmonic boundary value problem, SIAM Journal on Numerical Analysis, 1974, no. 11(1), pp. 14 – 33.

  20. Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. A fast direct solver for the biharmonic problem in a rectangular mesh, SIAM Journal on Scientific Computing, 2008, no. 1, pp. 303 – 333, doi.10.1137/070694168

  21. Meleshko V.V. Selected topics in the history of the two-dimensional biharmonic problem, Applied Mechanics Reviews, 2003, no. 56(1), pp. 33 – 85.

  22. Babenko K.I. Osnovy chislennogo analiza (Numerical analysis basics), Moscow, Nauka, 1986, 744 p.

  23. Algazin S.D. h – matritsa, novyi matematicheskii apparat dlya diskretizatsii mnogomernykh uravnenii matematicheskoi fiziki (h–matrix as a new mathematical apparatus for multidimensional equations discretization of mathematical physics), Moscow, URSS, 2018, 246 p.

  24. Algazin S.D. Chislennye algoritmy bez v klassicheskikh zadachakh matematicheskoi fiziki (Numerical algorithms without saturation in classical problems of mathematical physics), Moscow, URSS, 2018, 234 p.

  25. Algazin S.D., Solov’ev G.Kh. Chislennye algoritmy klassicheskoi matfiziki. Bystroe umnozhenie h-matritsy na vektor. Preprint № 1179 (Numerical algorithms of a classical matfizik XLIX. Fast multiplication of a h-matrix by a vector), Moscow, Institut problem mekhaniki RAN, 2019, 48 p.

  26. Bagdasaryan G.E., Mikilyan M.A., Vardanyan I.A. Panteleev A.V. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100822

  27. Shilin I.A., Vestyak V.A. Trudy MAI, 2010, no. 40, available at: http://trudymai.ru/eng/published.php?ID=22865


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход