Experimental verification of mathematical model of forced oscillations of an open thin-walled shell with a small attached mass and rigidly clamped edges

DOI: 10.34759/trd-2019-109-4


Dobryshkin A. Y.*, Sysoev O. E.**, Sysoev E. O.**

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: wwwartem21@mail.ru
**e-mail: fks@knastu.ru


The article regards the problem of numerical characteristics determining of a rectangular in-plan view open thin-walled shell, rigidly pinched along one of its sides.

A theoretical analysis of theories of oscillations of an open cylindrical shell and a curved plate was performed. The shell calculation was performed based on the Germain-Lagrange equation using asymptotic methods for solving differential equations, the Padé approximation, and the recursive perturbation theory. Approximation was performed by expansion in a series in a variable of wave-forming parameter. Analytical dependencies were obtained between the shell oscillation frequency and the wave-forming parameter of a cylindrical open shell. The performed studies were verified by the experimental studies. For these purposes, a special test facility was developed, test samples were fabricated, and a program of experimental studies was developed. Mathematical models and the shell vibrations studies refinement is necessary to reduce the onset of resonance effects and prevent accidents. The numerical data determined with the Padé approximation is very accurate, and describes perfectly frequency characteristics of the oscillatory process at the wave-forming parameter staying within the range from zero to unity. The data obtained in the course of the experiment setting up, represents minimal discrepancies for the RTV method (recursive formulation of perturbation theory). In the range of the wave-forming parameter less than 0.5, the data obtained during the experiment setting up, are inconsistent with numerical data determined using the Padé approximation method. The refined mathematical model demonstrates significant conformity with the experimental data at ε > 0.4. Thus, the range of ε > 0.4 is excellent for the calculation applying the mathematical model obtained in this article.


thin-walled shell, natural vibrations, attached mass, experiment


  1. Vlasov V.Z. Obshchaya teoriya obolochek i ee prilozhenie v tekhnike (General theory of shells and its application in technology), Moscow – Leninggad, Gostekhizdat, 1949, 784 p.

  2. Kubenko V.D. Koval’chuk P.S., Krasnopol’skaya T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek (Non-linear interaction of bending vibrations forms of cylindrical shells), Kiev, Naukova dumka, 1984, 220 p.

  3. Antuf’ev B.A. Kolebaniya neodnorodnykh tonkostennykh konstruktsii (Oscillations of non-uniform thin-walled structures), Moscow, Izd-vo MAI, 2011, 176 p.

  4. Sysoev O.E., Dobryshkin A.Yu., Nein Sit Naing. Trudy MAI, no. 98, 2018, available at: http://trudymai.ru/eng/published.php?ID=90079

  5. Z. Wang, Q. Han, D.H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell, Thin-Walled Structures, 2017, no. 119, pp. 438 – 446. DOI: 10.1016/j.tws.2017.07.002

  6. Sysoev O.E., Dobrychkin A.Yu., Nyein Sitt Naing, Baenkhaev A.V. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell, Materials Science Forum, 2019, vol. 945, pp. 885 – 892. DOI: 10.4028/www.scientific.net/MSF.945.885

  7. Sysoev O.E., Dobryshkin А.Yu., Naing N.S. Nonlinear Oscillations of Elastic Curved Plate Carried to the Associated Masses System, International Conference on Construction, Architecture and Technosphere Safety (ICCATS 2017), IOP Conf. Series: Materials Science and Engineering, 2017, vol. 262, 012055, doi:10.1088/1757-899X/262/1/012055

  8. Sysoev O.E., Dobryshkin A.Yu., Nein S.N., Kakhorov K.K. Uchenye zapiski KnAGTU, 2017, no. 1 (29), pp. 110 – 118. http://www.uzknastu.ru/files/pdf/29/1/16.pdf

  9. Mallon N.J., Fey R.H.B, Nijmeijer H. Dynamic stability of a base–excited thin orthotropic cylindrical shell with top mass: simulations and experiments, Journal of Sound and Vibration, 2010, vol. 329, pp. 3149 – 3170. https://research.tue.nl/en/publications/dynamic-stability-of-a-base-excited-thin-orthotropic-cylindrical-

  10. Y. Qu, H. Hua, G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries, Composite Structures, 2013, vol. 95, pp. 307 – 321.

  11. Y. Xing, B. Liu, T. Xu. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions, International Journal of Mechanical Sciences, 2013, vol. 75, pp. 178 – 188.

  12. M. Chen, K. Xie, W. Jia, and K. Xu. Free and forced vibration of ring-stiffened conical–cylindrical shells with arbitrary boundary conditions, Ocean Engineering, 2015, vol. 108, pp. 241 – 256.

  13. H. Li, M. Zhu, Z. Xu, Z. Wang, and B. Wen. The influence on modal parameters of thin cylindrical shell under bolt looseness boundary, Shock and Vibration, 2016, http://dx.doi.org/10.1155/2016/4709257

  14. Foster N., Fernández–Galiano L. Norman Foster in the 21st Century. AV Monografías, Artes Gráficas Palermo, 2013, pp. 163 – 164.

  15. Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics, Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93 – 104.

  16. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.

  17. Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58524

  18. Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46621

  19. Demin A.A., Golubeva T., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field, 11th Students’ Science Conference “Future Information technology solutions”, Bedlewo, 3-6 October 2013, pp. 61 – 66.

  20. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58589

  21. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105618


mai.ru — informational site MAI

Copyright © 2000-2024 by MAI