Algorithm for film structures machining process by torch discharge

DOI: 10.34759/trd-2019-109-19


Novomeisky D. N.*, Kulikov A. V.**, Piganov M. N.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia



A limit of mass-size indicators was exceeded while developing a variant of onboard defense complex (ODC), which included the active jamming radar station. In this respect, the decision was taken to realize the ODC control and monitoring unit based on another structural basis, i.e. in the form of microchips with irregular structure. Such microchips include both thin- and thick-film substrates with high-precision resistive elements. The thin-film substrates are produced by the technique of vacuum-heat sputtering on a glass ceramic substrate. The thick-film substrates are fabricated by the metal-screen printing technique with subsequent burning-off. Schematic design stage revealed while workable samples testing that laser adjustment operation did not ensure the required reliability of film-elements. Studies of other adjustment techniques were conducted. As the result of experimental studies, the adjustment technique for resistors processing by the high frequency torch discharge was selected. The main advantage of this method is the moderate temperature in the processing area. This excludes subsequent element material degradation processes. Further studies confirmed high reliability of film resistors after adjustment. Simulation of this technological operation was performed.

The algorithm for resistors adjustment by processing them with the high-frequency torch discharge is presented. The feature of this method is that it allows simultaneous of the element mounting to the zone of adjustment and a gap size calculating. Thus, the gap computing time is not accounted for directly during adjusting process. The program allows determining the gap values dependencies on a number of parameters of the affecting system. Computing results herewith are being presented in the form of graphs, which can be used afterwards. Besides, computing of other parameters, included in the adjustment model, is provided.

The algorithm ensures high precision of calculations and can be used for process automation of microchip elements adjustment, and solving the problem of this operational control of the process The program is written in LabVIEW language. Mathematical model of microchips film-elements adjustment by the torch discharge was used while developing the algorithm and calculation program.


onboard defense system, chip assembly with irregular structure, film element, adjustment, torch discharge, computational algorithm, computing program


  1. Dembitskii N.L., Lutsenko A.V., Fam V.A. Trudy MAI, 2015, no 81, available at:

  2. Sherstnev D.V., Maklashov V.A., Tezeikin V.K. Radioelektronnaya bor’ba v Vooruzhennykh silakh Rossiiskoi Federatsii, 2017, no. 1, pp. 172 – 173.

  3. Dobykin V.D., Kupriyanov A.I., Ponomarev V.G., Shustov L.N. Radioelektronnaya bor’ba. Silovoe porazhenie radioelektronnykh system (Electronic warfare. Power damage of radio-electronic systems), Moscow, Vuzovskaya kniga, 2007, 468 p.

  4. Tsvetnov V.V., Demin V.P., Kupriyanov A.I. Radioelektronnaya bor’ba. Radiorazvedka i radioprotivodeistvie (Electronic warfare. Radio reconnaissance and radio countermeasures), Moscow, Izd-vo MAI, 1998, vol. 2, 248 p.

  5. Kupriyanov A.I., Sakharov A.V. Teoreticheskie osnovy radioelektronnoi bor’by (Theoretical foundations of electronic warfare), Moscow, Vuzovskaya kniga, 2007, pp. 59 – 64.

  6. Gutkin L.S. Proektirovanie radiosistem i radioustroistv (Radio systems and radio devices design), Moscow, Radio i svyaz’, 1986, pp. 36 – 37.

  7. Denisov V.P., Dubinin D.V. Fazovye radiopelengatory (Phase radio-direction-finding station), Tomsk, Izd-vo TUSUR, 2002, 251 p.

  8. Maklashov V.A. Radiotekhnika, 2016, no. 1, pp. 28 – 31.

  9. Maklashov V.A., Piganov M.N. XIII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Integratsiya nauki, obrazovaniya i proizvodstva», Izhevsk, Izd-vo IzhGTU, 2018, pp. 83 – 88.

  10. Yudin V.N., Kamnev E.A. Trudy MAI, 2015, no. 83, available at:

  11. Ivanov I., Chadov I. Zarubezhnoe voennoe obozrenie, 2011, no. 1, pp. 14 – 20.

  12. Suchkov K.I. Trudy MAI, 2015, no. 81, available at:

  13. Chernobrovkin D.I., Mishanin N.D., Piganov M.N. Pribory i sistemy upravleniya, 1978, no. 6, pp. 45 – 46.

  14. Piganov M.N., Volkov A.V. Tekhnika sredstv svyazi. Seriya: Tekhnologiya proizvodstva i oborudovanie, 1985, no. 2, pp. 29 – 35.

  15. Tyulevin S.V., Piganov M.N., Shopin G.P., Stolbikov A.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2014, vol. 16, no. 1(2), pp. 557 – 560.

  16. Piganov M.N., Shopin G.P., Stolbikov A.V. Patent № 2371797 RF, MPK N01S 17/22, 27.10.2009.

  17. Kostin A.V., Piganov M.N., Stolbikov A.V. Vestnik SGAU, 2011, no. 7, pp. 117 – 121.

  18. Stolbikov A.V., Piganov M.N., Kostin A.V. Vestnik SGAU, 2011, no. 7, pp. 113 – 116.

  19. Piganov M.N., Novomeiskii D.N. Mezhdunarodnaya konferentsiya i molodezhnaya shkola “Informatsionnye tekhnologii i nanotekhnologii” (ITNT-2018), Samara, Novaya tekhnika, 2018, pp. 1698 – 1705.

  20. Dembitskii N.L., Lutsenko A.V., Fam V.A. Trudy MAI, 2015, no. 83, available at:

  21. Kachanov A.V., Trekhov E.S., Fetisov E.P. Elektrodinamicheskoe opisanie vysokochastotnogo fakel’nogo razryada. Fizika gazorazryadnoi plazmy (Electrodynamic description of high-frequency torch discharge. Gas-discharge plasma physics) Moscow, Avtomizdat, 1968, pp. 39 – 47.

  22. Trekhov E.S., Fetisov E.P. K teorii vysokochastonogo fakel’nogo razryada v vozdukhe. Fizika gazorazryadnoi plazmy (On the theory of high-frequency torch discharge in the air. Gas-discharge plasma physics), Moscow, Avtomizdat, 1969, pp. 148 – 155.

Download — informational site MAI

Copyright © 2000-2021 by MAI