Design procedure of geometrical parameters and strength characteristics of roll equipment


DOI: 10.34759/trd-2020-110-1

Аuthors

Kochetov V. I.*, Lazarev S. I.**, Sokolov M. V.***, Lomakina O. V.****, Shestakov K. V.*****

Tambov State Technical University, 106, Sovetskaya, Tambov, 392000, Russia

*e-mail: geometry@mail.nnn.tstu.ru
**e-mail: sergey.lazarev.1962@mail.ru
***e-mail: msok68@mail.ru
****e-mail: lomakinaolga@mail.ru
*****e-mail: kostyanshestakov@mail.ru

Abstract

The article regards the issues of industries, such as aviation and automotive, where products in the form of thin-walled profiles of various cross-sections find more and more application. Basic equipment for obtaining rolled materials, determining the line capacity and the of the products quality, are rolling machines, called calenders, employed in tires, tubes, airbags and hoses manufacturing, operating under high excess pressure. Working organs of these machines represent rolls, rotating towards each other with equal or different circumferential speeds, which axes are located in horizontal plane. The process of materials irregularities transportation is accompanied by dynamic loads, affecting negatively the working organs reliability and products quality. In view of complex kinematics of agitated masses in the effective volume of the two-shafted machines, the existing theoretical methods of the process analysis are limited by the indirect mixing estimation by energy consumption on material deformation in the gap between the rotor and the body wall.

Thus, the purpose of the article consists in developing design procedure of geometrical size and strength characteristics of roll equipment, capable of withstanding the calculated power loads. The design procedure allows minimizing the strength losses arising as the result of fatigue cracks or damages occurrence while the roll equipment operation. Design parameters obtained by this technique allow predicting selection of materials with low rate of fatigue cracks development with determining parts size and application of elements of reliability.

The technique, developed in the presented work, allows obtaining optimal geometric size of the calender roll based on the optimization method application employing a dimensionless complex criterion. The developed technique gives reliable size of the calender roll obtained employing dimensionless complex criterion and methods of target functional optimization without restrictions using penalty functions. The article presents the example of optimal geometrical size selection of roll for the three-roll calendar with penalty functions technique and brute force method, confirming correctness of the approach to the set problem solution.

Keywords:

calender rolls, penalty function method, stiffness, strength, complex criterion, penalty function

References

  1. Demidov A.V. 56 Nauchno-tekhnicheskaya konferentsiya VGTU. Sbornik trudov. Voronezh, Voronezhskii gosudarstvennyi tekhnicheskii universitet, 2016, pp. 34 - 36.

  2. Neoberdin Yu.A., Slobodinskaya T.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta, 2012, no. 17(43), pp. 83 - 87.

  3. Pisarev A.V. Snizhenie dinamicheskikh nagruzok v kalandrakh dlya otdelki tkanei: (Dynamic loads reduction in calenders for fabric finishing), Doctor's thesis, Ivanovo, 2009, 208 p.

  4. Litvinov V.M., Litvinov E.V. Metody rascheta massy konstruktsii letatel'nogo apparata po trebovaniyam prochnosti i zhestkosti (Design procedures of the aircraft structure mass by the requirements for strength and stiffness), Moscow, Izd. otdel TsAGI, 2008, 202 p.

  5. Mardimasova T.N., Rokityanskaya I.V. Raschet na prochnost' i zhestkost' sterzhnevykh sistem pri prostykh vidakh nagruzheniya (Strength and stiffness calculation of rod systems under simple types of loading), Ufa, Ufimskii gosudarstvennyi aviatsionnyi tekhnicheskii universitet, 2010, 141 p.

  6. Pkhon Kh.K., Sysoev E.O., Kuznetsov E.A., Min K.Kh. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109237

  7. Dudchenko A.A., Basharov E.A. Trudy MAI, 2011, no. 42, available at: http://trudymai.ru/eng/published.php?ID=24261

  8. Firsanov V.V., Vo A.Kh., Chan N.D. Trudy MAI, 2019, no. 104, available at: http://trudymai.ru/eng/published.php?ID=102130

  9. Aleroeva Kh.T. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76821

  10. Lazarev S.I. Popov V.Yu., Lazarev D.S., Levin A.A. Vestnik Tomskogo gosudarstvennogo universiteta, 2017, vol. 22, no. 1, pp. 60 - 63.

  11. Kochetov V.I., Lazarev S.I., Baronin G.S. Khimicheskoe i neftegazovoe mashinostroenie, 2016, no. 7, pp. 2 - 9.

  12. IvanchenkoA.I., Pakharenko V.A., Privalko V.P. et al. Teplofizicheskie i reologicheskie kharakteristiki polimerov (Thermophysical and rheological characteristics of polymers), Kiev, Naukova dumka, 1977, 244 p.

  13. Kogaev V.P. Raschety na prochnost' pri napryazheniyakh, peremennykh vo vremeni (Strength Calculations at variable in time stresses), Moscow, Mashinostroenie, 1993, 364 p.

  14. GOST 25.101-83. Raschety i ispytaniya na prochnost'. Metody skhematizatsii sluchainykh protsessov nagruzheniya elementov mashin i konstruktsii i statisticheskogo predstavleniya rezul'tatov (State Standard 25.101-83. Calculations and strength tests. Methods of schematization of random processes of machines elements and structures loading and statistical representation of results), Moscow, Izdatel'stvo standartov, 1983, 25 p.

  15. Kachurin N.M., Afanas'ev I.A., Tarasov V.V., Pestrikova V.S. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, 2014, no. 4, pp. 100 - 108.

  16. Popov E.P., Pal'tov I.P. Priblizhennye metody issledovaniya nelineinykh avtomaticheskikh system (Approximate methods of studuing nonlinear automatic systems), Moscow, Fizmatgiz, 1960, 792 p.

  17. Molodid A.K. Vestnik nauchnykh konferentsii, 2017, no. 9-3 (25), pp. 30 - 32.

  18. Grubyi S.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2018, no. 4 (697), pp. 3 - 9.

  19. Dang Kuang Zang, Tarlakovskii D.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2014, no. 1, pp. 148 - 158.

  20. GOST 11993-80. Kalandry rezinoobrabatyvayushchie. Obshchie tekhnicheskie usloviya (State Standard 11993-80. Rubber-processing calenders. General specifications), Moscow, Izd-vo standartov, 1980.

  21. Halász L. Control Methods in Polymer Processing, Studies in Polymer Science, 2012, vol. 10, 486 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход