Intelligent detector model of automated control system protection system


DOI: 10.34759/trd-2020-110-16

Аuthors

Solomatin M. S.*, Mitrofanov D. V.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: newmihei@gmail.com
**e-mail: mitrofanovd@mail.ru

Abstract

At present, information technologies development, the emergence of new threats to the information security of information systems, such as any automated process control systems, as well as with increasing requirements for data security, led to the need of creating or constantly upgrading the existing information protection systems

Threats to the integrity, accessibility and confidentiality of information to the stored and processed data in automated control systems (ACS) can lead to loss of prestige of the organization, financial problems, threats to state and corporate secrets protection, etc.

Traditional methods of attacks detecting do not allow achieving optimal characteristics of internal attacks detection. The analysis reveals that attack detection systems building based on artificial immune system technologies is quite promising. This technique has several advantages over other methods, ensuring:

– high speed;

– a relatively simple learning algorithm;

– low resource consumption.

As a consequence of artificial immune systems, a promising area of research in the field of information protection of automated systems is the “intelligent detector” tools development. For further software realization and implementation in automated control systems, it is necessary to describe the requirements that will be imposed on the intelligent detector, basic functions of operation, and basic elements of the intelligent detector.

By the “intelligent detector” we will mean a system, operating in real time mode, protects against unauthorized access by automatically detecting external/internal impacts or threats, and elaborates an appropriate solution to eliminate or slow them down.

The requirements for the intelligent detector system include:

1. The objectivity (reliability) of the result. Evidence that vulnerabilities do exist in the information system, and describe in detail the possible consequences of their implementation.

2. Completeness of the description of possible vulnerabilities in the system.

3. General recognition of security assessment criteria. Employing simple and clear criteria for assessing information system sequrity.

The functions of an intelligent detector system can be divided into external (identifying and suppressing attacks) and internal (identifying and eliminating vulnerabilities).

The functions of an intelligent detector system can be splitted into external (identifying and suppressing attacks) and internal (identifying and eliminating vulnerabilities).

The intelligent detector of an information system, in our opinion, should perform the following functions:

1. Perform information gathering from the system.

2. Process the received information for a further solution developing.

3. Identify the cases of security policy breach.

4. Develop appropriate system responses to violations.

Keywords:

automated control system, information security, information system, information systems security, intelligent detector of automated control system

References

  1. Bukharin V.V., Kir’yanov A.V., Starodubtsev Yu.I. Trudy MAI, 2012, no. 57. URL: http://trudymai.ru/eng/published.php?ID=31145

  2. Bukharin V.V., Kir’yanov A.V., Starodubtsev Yu.I., Truskov S.S. Trudy MAI, 2012, no. 57. URL: http://trudymai.ru/eng/published.php?ID=31144

  3. Mizina E.G. Bezopasnost’ informatsionnykh tekhnologii, 1999, no. 2, pp. 57 – 59.

  4. Mukhamedieva D.T., Camanova M.M. Molodoi uchenyi, 2016, no. 18, pp. 7 – 10.

  5. Novikov A.A., Sharkov A.E., Serdyuk V.A. Tezisy dokladov X yubileinoi konferentsii “Metody i tekhnicheskie sredstva obespecheniya bezopasnosti informatsii”, Sankt Peterburg, 2002, pp. 153 – 154.

  6. Galatenko A.V. Jet Info, 1999, no. 8, pp. 2 – 28.

  7. Galatenko A.V. Zhurnal setevykh reshenii/LAN, 1996, vol. 2, no. 8, pp. 14.

  8. Litvinenko A.O. Trudy MAI, 2016, no. 86, URL: http://trudymai.ru/eng/published.php?ID=67829

  9. Tuzik S. Jet Info, 2000, no. 10, pp. 8 – 16.

  10. Shumskii A.A., Shelupanov A.A. Sistemnyi analiz v zashchite informatsii (System analysis in information protection), Moscow, Gelios ARV, 2005, 224 p.

  11. Cheremnykh S.V., Semenov I.O., Ruchkin V.S. Modelirovanie i analiz sistem. IDEF-tekhnologii: praktikum (Systems modelling and analysis. IDEF Technologies: Workshop), Moscow, Finansy i statistika, 1997, 188 p.

  12. Gurakov M.A., Kostyuchenko E.Yu. Trudy MAI, 2016, no. 86, URL: http://trudymai.ru/eng/published.php?ID=67851

  13. Romanchev I.V., Romancheva N.I. Trudy mezhdunarodnogo simpoziuma «Nadezhnost’ i kachestvo», 2010, vol. 2, pp. 260 – 262.

  14. Chernov D.V., Sychugov A.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 10, pp. 58 – 64.

  15. Karantaev V.G. Informatizatsiya i sistemy upravleniya v promyshlennosti, 2017, no. 2 (68), URL https://isup.ru/articles/2/11118/

  16. Kul’ba V.V., Kurochka N.P. Naukovedenie, 2015, vol. 7, no. 3 (28), pp. 108.

  17. Nikonov A.I., Pavlov N.O. Vestnik Nizhegorodskogo gosudarstvennogo inzhenerno-ekonomicheskogo instituta, 2016, no. 8 (63), pp. 48 – 54.

  18. Skrypnikov A.V., Khvostov V.A., Chernyshova E.V., Samtsov V.V., Abasov M.A. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii, 2018, vol. 80, no. 4 (78), pp. 96 – 110.

  19. Pishchuk B.N. Vychislitel’nye tekhnologii, 2013, vol. 18, no. S1, pp. 170 – 175.

  20. Dudakov N.S., Makarov K.V., Timoshenko A.V. Trudy MAI, 2016, no. 90, URL: http://trudymai.ru/eng/published.php?ID=74844


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход