Technogenic space debris reprocessing into fuel on low orbits


DOI: 10.34759/trd-2020-110-17

Аuthors

Barkova M. E.

Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia

e-mail: Alttaira@yandex.ru

Abstract

The main problem of article is spacecraft project creation for space debris utilinzation.

The purpose of the presented work consists in concept developing and designing an CSD spacecraft, which will allow space debris reprocessing into a fuel.

This work urgency consists in near-earth space clearing from space debris by its reprocessing into a fuel.

Basic shortcoming of the existing projects of technical devices is crushing of bulky space debris that leads to smaller fragments formation.

The article suggests employing the concept of pseudo-liquid fuel creation. Pseudo-liquid fuel is a fuel from the fine metallized powder in a gas media. The CSD spacecraft f purpose consists of a space debris catcher and a system for its utilization by reprocessing into a pseudo-liquid fuel.

The obtained results can be applied while CSD spacecraft design and operation.

The author concludes that space debris reprocessing into pseudo-liquid fuel is most expedient as this type of utilization of space debris is waste-free.

The author’s undoubted merit of is creation of the invention named “A spacecraft for space debris utilization”, as well as the CSD operation developing.

The prospect of further developments in this field consists in the space debris reprocessing system improving to reduce economic spending for the project, further development of the CSD shock-proof frame and its fan-shaped solar collector to avoid breakages while the space debris gathering, as well as the CSD project improving for subsequent implementation.

Keywords:

space, space debris, technogenic, utilization, processing, the spacecraft for collecting space debris

References

  1. Aleshin V.I. et al. Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom (Technogenic contamination monitoring of near-earth space and warning of dangerous situations created by space debris), Moscow, TsNIImash, 2015, 244 p.

  2. Michael W. Taylor. Orbital Debris: Technical and Legal Issues and Solutions, Institute of Air and Space Law, Montreal, 2006, 120 p.

  3. Liou Jer-Chyi, Matney Mark J., Anz-Meador Phillip D., Kessler Donald, Jansen Mark, Theall Jeffery R. The New NASA Orbital Debris Engineering Model ORDEM2000, NASA/TP-2002-210780, S-890, NAS 1.60:210780. May 01, 2002, p. 86. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020051085.pdf

  4. Barkova M.E. Trudy MAI, 2018, no. 103, URL: http://trudymai.ru/eng/published.php?ID=100712

  5. Popov V.G., Yaroslavtsev N.L. Zhidkostnye raketnye dvigateli (Liquid rocket engines), Moscow, MATI, 2001, 171 p.

  6. Barkova M.E. Patent 2686415 SU, 25.04.2019.

  7. Arzamasov B.N. Solov’eva T.V., Gerasimov S.A. Spravochnik po konstruktsionnym materialam (Reference book on constructional materials), Moscow, MGTU im. Baumana, 2005, 649 p.

  8. Sukhanov A.A. Astrodinamika (Astrodynamics), Moscow, IKI RAN, 2010, 204 p.

  9. Shin-Ichiro Nishida, Naochiko Kikuchi. A Scenario and technologies for Space Debris, 2014, URL: https://pdfs.semanticscholar.org/1404/8fabe2b16911e5f183d1125a662a6ff9ac9b.pdf

  10. Nikol’skii V.V. Proektirovanie kosmicheskikh apparatov (Spacecraft Designing), Saint Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet, 2003, 80 p.

  11. Egorov A.G., Tizilov A.S. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 3 (27), pp. 277 – 281.

  12. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, URL: http://trudymai.ru/eng/published.php?ID=93299

  13. Adimurthy V., Ganeshan A.S. Space debris mitigation measures in India, Acta Astronautica, 2006, vol. 58, issue 3, pp. 168 – 174. DOI: 10.1016/j.actaastro.2005.09.002

  14. Ram Jakhu. Legal Issues of Satellite Telecommunications, The Geostationary Orbit, and Space Debris, Astropolitics, 2007, vol. 5 (2), pp. 173 – 208. DOI: 10.1080/14777620701580828

  15. Marco M.Castronuovo. Active space debris removal – A preliminary mission analysis and design, Acta Astronautica, 2011, vol. 69, issue 9 −10, pp. 848 – 859. DOI: org/10.1016/j.actaastro.2011.04.017

  16. Avdeev A.V., Metel’nikov A.A. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=72840

  17. Ashurbeili I.R., Lagovier A.I., Ignat’ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43. URL: http://trudymai.ru/eng/published.php?ID=24856

  18. Avdeev A.V. Trudy MAI, 2012, no. 61. URL: http://trudymai.ru/eng/published.php?ID=35496

  19. Shin-Ichiro Nishida, Satomi Kawamoto, Yasushi Okawa, Fuyuto Terui, Shoji Kitamura. Space debris removal system using a small satellite, Acta Astronautica, 2009, vol. 65, issue 1–2, pp. 95 – 102. DOI:org/10.1016/j.actaastro.2009.01.041

  20. Zhang Yulin, Wang Zhaokui. Space Traffic Safety Management and Control, IEEE Transactions on Intelligent Transportation Systems, 2015, vol. 17 (4), pp. 1 – 4. DOI: 10.1109/TITS.2015.2494686

  21. Schildknecht T., Musci R., Flohrer T. Properties of the high area-to-mass ratio space debris population at high altitudes, Advances in Space Research, 2008, vol. 41, issue 7, pp. 1039 – 1045. DOI: org/10.1016/j.asr.2007.01.045


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход