Solid fuel combustion surface modelling with regard for heat-conducting elements


DOI: 10.34759/trd-2020-110-19

Аuthors

Belyakov A. Y.

Engineering Design Bureau “Iskra” named after Ivan Kartukov, 28, Leningrad Avenue, Moscow, 125284, Russia

e-mail: oir@iskramkb.ru

Abstract

The presented article describes a program for a charge of solid or paste-like rocket fuel combustion surface modelling, developed in MATLAB package. Initial data for the charge combustion surface forming includes heat conductivity factors of all fuel charge elements (of the fuel itself and all thermal conductive elements it contains), the charge geometry, stored in the form of a table (finite elements mesh), and the fuel combustion law. The fuel combustion law accounts only for the charge temperature field without considering combustion products pressure in the chamber and erosion processes, since it is quite sufficient to obtain qualitative pattern of the process being considered. The charge temperature field at each time instant is formed by solving the equation of thermal conductivity in finite differences. The article presents derivation of the equation of thermal conductivity fr om the differential equation of thermal conductivity. The results of the program execution are presented in the form of a table wh ere zones of solid, gaseous and transient states of the fuel are highlighted by various colors. Qualitative comparison of the obtained results (the charge combustion surface at a given time instant after the burning commence) with the results of the experiments on the subject of interest was performed. The trend for future works in the field was proposed as well, namely, on programs creation for designing rocket engines, operating on solid- and paste-like state fuels, with thermal conductive elements included into the fuel charge.

Keywords:

differential equation of thermal conductivity, finite difference method, solid fuel, paste-like fuel, numerical simulation

References

  1. Yudaev B.N. Tekhnicheskaya termodinamika. Teploperedacha (Technical thermodynamics), Moscow, Vysshaya shkola, 1988, 479 p.

  2. Sorokin V.A., Yanovskii L.S. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh (Rocket-propelled engines on solid and paste-like fuels), Moscow, Fizmatlit, 2010, 138 p.

  3. D’yakonov V.P. MATLAB. Polnyi samouchitel’ (MATLAB. Full tutorial), Moscow, DMK press, 2012, 770 p.

  4. Shishkov A.A. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva (Work processes in solid fuel rocket engines), Moscow, Mashinostroenie, 1989, 239 p.

  5. Milekhin Yu.M., Klyuchnikov A.N. Energetika raketnykh dvigatelei na tverdom toplive (Energetics of solid propellant rocket engines), Moscow, Nauka, 2013, 207 p.

  6. Sorokin V.A. Yanovskii L.S. Proektirovanie i otrabotka raketno-pryamotochnykh dvigatelei na tverdom toplive (Design and development of solid propellant rocket engines), Moscow, MGTU im. N.E. Baumana, 2016, 317 p.

  7. Alemasov V.E., Dregalin A.F. Teoriya raketnykh dvigatelei (Theory of rocket engines), Moscow, Mashinostroenie, 1989, 464 p.

  8. Fedorov D.Yu., Valui P.V., Loginov A.N. 9-i Vserossiiskii mezhotraslevoi molodѐzhnyi konkurs nauchno-tekhnicheskikh rabot i proektov «Molodѐzh’ i budushchee aviatsii i kosmonavtiki»: sbornik annotatsii, 2017, pp. 68.

  9. Pankratov B.M., Osnovy teplovogo proektirovaniya transportnykh kosmicheskikh system (Fundamentals of transport space systems thermal design), Moscow, Mashinostroenie, 1988, 304 p.

  10. Milekhin Yu.M., Gusev S.A. Teploprovodnost’ neodnorodnykh materialov Thermal conductivity of heterogeneous materials (Thermal conductivity of heterogeneous materials), Moscow, Arkhitektura-S, 2006, 184 p.

  11. Obnosov B.V. Sorokin. V.A. Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigatelei na tverdom toplive (Design and development of solid propellant rocket engines), Moscow, MGTU im. N.E. Baumana, 2012, 280 p.

  12. Kalinin V.V., Kovalev Yu.N. Nestatsionarnye protsessy i metody proektirovaniya uzlov RDTT (Non-stationary processes and design methods of solid propellant units), Moscow, Mashinostroenie, 1986, 110 p.

  13. Sutton G.P. Rocket Propulsion Elements, New York, A Wiley-lnterscience Publication, 2001, 764 p.

  14. Maksimov S.F., Bobrov A.N., Antonov Yu.V. Nauka i obrazovanie, 2015, no. 11, pp. 267 – 275.

  15. Valui P.V., Vityazev A.V., Loginov A.N., Stirin E.A. Patent № 187256 SU, 12.08.2017.

  16. Eliseev V.I., Bondarenko S.G., Kurochkin A.F., Maiorskaya T.A., Ustimenko A.B., Suvortsev U.B. Vicnik Dvigunobuduvannya, 2012, no. 1, URL: http://periodicals.zntu.edu.ua/index.php/1727-0219/article/view/28040

  17. Vinogradov V.S., Tret’yakova O.N., Khakimov D.V. Trudy MAI, 2008, no. 30, URL: http://trudymai.ru/eng/published.php?ID=7522

  18. Stirin E.A., Loginov A.N., Tikhomirov M.A. Trudy MAI, 2014, no. 74. http://trudymai.ru/eng/published.php?ID=49307

  19. Siluyanova M.P., Popova T.V. Trudy MAI, 2016, no. 85, URL: http://trudymai.ru/eng/published.php?ID=66210

  20. Popova T.V., Sitnikov S.A., Lomazov V.S. Tekhnologiya metallov, 2015, no. 8, pp. 9 – 15.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход