Interaction Dynamics Problem of a Layer, Being Squeezed, of Viscous Compressible Gas with Elastic Plate


DOI: 10.34759/trd-2020-110-21

Аuthors

Blinkova O. V.1*, Kondratov D. V.2**

1. Saratov State Academy of Law, 1, Volskaya str., Saratov, 410056, Russia
2. Volga Management Institute named after P.А. Stolypin, 164, Moskovskaya str., Saratov, 410012, Russia

*e-mail: oksana_parfilova@mail.ru
**e-mail: kondratovdv@yandex.ru

Abstract

The rapid process of technology and engineering development in the modern world leads to the necessity of developing and considering mathematical models of thin-walled elastic structural elements. The study of elastic thin-walled structures, the space between which is filled with a viscous liquid or gas, is becoming increasingly interesting. The article tackles the problem of modeling the flow of a viscous compressible gas in a slotted channel consisted of two plates. The first plate is rigid, and performs harmonic vibrations in the vertical plane (vibrator), while the second one is represents an elastic plate (stator). Mathematical model in dimensionless variables is a coupled system of partial differential equations, describing motion dynamics of a viscous compressible gas (Navier-Stokes and continuity equations) flowing between two plates and an elastic beam-strip with the corresponding boundary conditions. To solve the set problem of a viscous incompressible gas and an elastic linear plate interaction, we switched to the dimensionless variables of the problem. Small parameters of the problem, i.e. relative width of the viscous gas layer and relative deflection of the elastic stator, were selected. These small parameters of the problem allowed using the perturbation method to simplify the system of equations. The article presents a technique for solving this problem, being a combination of the direct method for solving differential equations and the Bubnov-Galerkin method. An expression for the amplitude-frequency response of the elastic stator was obtained. The study of the amplitude-frequency response of the elastic stator will determine the operating modes under which the resonant phenomena occurs, and accounts for them when developing new structures in the modern engineering and aerospace industries. The presented mathematical model can find application in gas-dynamic vibration mounts and dampers.

Keywords:

viscous compressible gas, slit channel, a bar-strip, elastic single-layer plate, Navier-Stokes equation, amplitude frequency responce

References

  1. Kondratov D.V., Kalinina A.V. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53453

  2. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58589

  3. Ageev R.V., Kondratov D.V., Maslov Yu.V. Polet, 2013, no. 6, pp. 35 – 39.

  4. Gavrilov D.G., Mamonov S.V., Martirosov M.I., Rabinskii L.N. Trudy MAI, 2010, no. 40, available at: http://trudymai.ru/eng/published.php?ID=22867

  5. Kondratov D.V. Aviakosmicheskoe priborostroenie, 2007, no. 11, pp. 4 – 11.

  6. Korovaitseva E.A. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109235

  7. Antsiferov S.A., Kondratov D.V., Mogilevich L.I. Perturbing moments in a floating gyroscope with elastic device housing on a vibrating base in the case of a nonsymmetric end outflow, Mechanics of Solids, 2009, vol. 44, no. 3, pp. 352 – 360.

  8. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105618

  9. Ageev R.V., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53466

  10. Blinkov Yu.A., Kovaleva I.A., Kuznetsova E.L., Mogilevich L.I. Trudy MAI, 2014, no. 75, URL: http://trudymai.ru/eng/published.php?ID=49679

  11. Ageev R.V., Bykova T.V., Mogilevich L.I., Popov V.S. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, vol. 4, no. 1, pp. 7 – 13.

  12. Ageev R.V., Kuznetsova E.L., Kulikov N.I., Mogilevich L.I., Popov V.S. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta, 2014, no. 3, pp. 17 – 35.

  13. Amabili M., Garziera R., Mukharlyamov R.G., Riabova K. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 2016, no. 2, pp. 53 – 63.

  14. Gorshkov A.G., Starovoitov E.I., Yarovaya A.V. Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii (Mechanics of layered viscoelastic-plastic structural elements), Moscow, Fizmatlit, 2005, 576 p.

  15. Popov V.S., Khristoforova A.V. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, vol. 3, no. 1, pp. 38 – 45.

  16. Kondratov D.V., Blinkova O.V. Matematicheskoe modelirovanie, komp’yuternyi i naturnyi eksperiment v estestvennykh naukakh, 2018, no. 1, pp. 4 – 11.

  17. Kondratov D.V., Blinkova O.V. Mezhdunarodnaya nauchnaya konferentsiya «Komp’yuternye nauki i informatsionnye tekhnologii»: sbornik trudov, Saratov, Nauka, 2018, pp. 56 – 59.

  18. Buchnoi N.V., Kondratov D.V., Mogilevich L.I. Prikladnaya matematika i mekhanika, 2017, no. 11, pp. 94 – 98.

  19. Fabrikant N.Ya. Aerodinamika (Aerodynamics), Moscow, Nauka, 1964, 815 p.

  20. Chapman C.J., Sorokin S.V. The forced vibration of an elastic plate under significant fluid loading, Journal of Sound and Vibration, 2005, no. 281, pp. 719 – 741, DOI:10.1016/j.jsv.2004.02.013.

  21. Ankilov A.V., Vel’misov P.A. Dinamika i ustoichivost’ uprugikh plastin pri aerogidrodinamicheskom vozdeistvii (Dynamics and stability of elastic plates under aero-hydrodynamic effects), Ul’yanovsk, UlGTU, 2009, 220 p.

  22. Ergin A., Ugurlu B. Linear vibration analysis of cantilever plates partially submerged in fluid, Journal of Fnluids and Structures, 2003, vol. 17, no. 7, pp. 927-939. DOI: 10.1016/S0889-9746(03)00050-1.

  23. Kramer M.R., Liu Z., Young Y.L. Free vibration of cantilevered composite plates in air and in water, Composite Structures, 2013, vol. 95, pp. 254 – 263. DOI: 10.1016/j.compstruct.2012.07.017.

  24. Amabili M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, USA, 2008, 374 p.

  25. Mergen H Ghaesh, Marco Amabili, Michael P Paidoussis. Nonlinear dynamics of axially moving plates, Journal of Sound and Vibration, 2013, vol. 332, issue 2, pp. 391 – 406.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход