Technique elaboration for various types of sources “suboptimal” monitoring routes by unmanned aerial vehicle


DOI: 10.34759/trd-2020-111-10

Аuthors

Timoshenko A. V.1*, Baldytchev M. T.2**, Marenkov I. A.2**, Pivkin I. G.2**

1. Radiotechnical Institute named after academician A.L. Mintz, 10-1, str. 8 March, Moscow, 127083, Russia
2. Cherepovets higher military engineering school of radio electronics, 126, Sovetsky Prospekt, Cherepovets, Vologda region, 162622, Russia

*e-mail: atimoshenko@rti-mintsu
**e-mail: cvviur6@mil.ru

Abstract

The article considers a method for “suboptimal” routes elaborating for different-type sources monitoring by an unmanned aerial vehicle (UAV). Currently, unmanned aerial vehicles equipped with optical monitoring and radio monitoring tools are used to solve the problem of searching, detecting and coordinates determining of various objects, including radio sources, in remote areas. This is due to the possibility of the direct barraging over the areas of the proposed search objects location. These problems solution requires the UAV optimal movement route, due to the limited resource of its energy carriers. It is quite obvious that the shorter the travel time between optical monitoring areas, the more areas can be surveyed in a limited time. ll in all, it leads to the higher the probability of more searched objects detection and higher the overall monitoring efficiency. However, the majority of scientific and research papers devoted to monitoring systems effectiveness improving with UAVS consider this issue superficially, or not at all. In this regard, the study of UAV flight routes optimization when monitoring sources is quite an urgent task. In the article, the “suboptimal” routes are understood as routes that ensure local extremum in the area of minimizing the UAV movement time between the specified monitoring areas under the impact of dynamically changing air masses movement and with a fixed performance of the UAV power plant. The route geometry impact on the accuracy of determining the radio sources coordinates is shown. Based on the simulation results, these factors impact on the monitoring routes elaboration is estimated. Comparing the results of the flight duration on routes, elaborated according to the developed method, relative to routes elaborated without account for the considered factors, demonstrates a gain in the flight duration reduction by of 5–7% on average, while sustaining the acceptable level of the geometric factor impact on determining the radio sources coordinates.

Keywords:

: unmanned aerial vehicle, optical monitoring means, radio monitoring means, navigation wind, monitoring route

References

  1. Kondrat’ev V.S., Kotov A.F., Markov L.N. Mnogopozitsionnye radiotekhnicheskie sistemy (Multiposition Radio Engineering Systems), Moscow, Radio i svyaz’, 1986, 264 p.

  2. Gaichuk Yu.N., Pechurin V.V., Serebryakov Yu.I. Naukoemkie tekhnologii, 2016, vol. 17, no. 12, pp. 34 – 40.

  3. Chin’ V.M. 13-ya Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya −2017”, Moscow, Izd-vo MAI, 2017, pp. 136 – 137.

  4. Fam S.K., Moiseev, D.V. Trudy MAI, 2012, no. 52, available at: http://trudymai.ru/eng/published.php?ID=29420

  5. Chin’ Van Min’. Planirovanie marshruta poleta legkogo bespilotnogo letatel’nogo apparata s uchetom deistviya vetra (Flight route planning of light unmanned aerial vehicle with account for the wind action), thesis of the candidate of engineering sciences, Moscow, MAI, 2017, available at: https://studizba.com/files/show/pdf/25352-1-dissertaciya.html

  6. Podlip’yan P.E., Maksimov N.A. Trudy MAI, 2011, no. 43, available at: http://trudymai.ru/eng/published.php?ID=24769

  7. Moiseev D.V., Chin’ V.M., Mozolev L.A. et al. Trudy MAI, 2015, no. 79, available at: http://trudymai.ru/eng/published.php?ID=55782

  8. Moiseev D.V., Chin’ V.M. Naukovedenie, 2017, vol. 9, no. 3, available at: http://naukovedenio.ru/PDF/102TVN317.pdf

  9. Moiseev V.S., Absalyamov M.N., Khakimullina A.R. Izvestiya Vuzov. Aviatsionnaya tekhnika, 2001, no. 1, pp. 16 – 23.

  10. Kishalov A.E., Galimzyanova R.R. Molodezhnyi vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2015, no. 1(13), C. 74 – 79.

  11. Baldychev M.T., Ganiev, A.N., Serebryakov, Yu.I. et al. Patent na izobretenie RU 2677367, 16.01.2019.

  12. Borsuk N.A., Deryugina E.O., Latsin S.M. et al. Elektromagnitnye volny i elektronnye sistemy, 2019, vol. 24, no. 3, pp. 55 – 61.

  13. Kokuev A.A., Makarov K.V., Timoshenko A.V. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=73332

  14. Chernyi M.A., Korablin V.I. Samoletovozhdenie (Aeronautics), Moscow, Transport, 1973, 368 p.

  15. Dubinin M. Vychislenie rasstoyanii i nachal’nogo azimuta mezhdu dvumya tochkami na sfere, available at: https://gis-lab.info/qa/great-circles.html

  16. Chebotar’ I.V., Pivkin I.G., Baldychev M.T. et al. Elektromagnitnye volny i elektronnye sistemy, 2019, vol. 24, no. 8, pp. 35 – 39.

  17. Baldychev M.T., Pivkin I.G., Gaichuk Yu.N., Pechurin V.V., Laptev I.V. Patent na izobretenie RU 2695321, 23.07.2019.

  18. Gantmakher F.R. Teoriya matrits (Matrix Theory), Moscow, Nauka, 1966, 576 p.

  19. Ross K. Komp’yutera, 1999, no. 11, pp. 13 – 18.

  20. Pivkin I.G., Pechurin V.V, Baldychev M.T. et al. Svidetel’stvo o registratsii programmy dlya EVM RU 2019613634, 20.03.2019.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход