Circuitry for parrying single and dose effects in satellite receivers


DOI: 10.34759/trd-2020-111-11

Аuthors

Petukh N. N.*, Blagodirev V. A.

Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia

*e-mail: petukh_nn@spacecorp.ru

Abstract

This paper introduces new circuitry solutions for protection satellite electronic equipment from space environment which can damage electronic system and crush expensive space mission.

Of particular importance is the ionizing radiation of outer space from various sources both inside and outside our solar system. The functioning of satellite electronic equipment is influenced by several factors include galactic cosmic rays (GCR), trapped protons, trapped electrons, solar energetic particles (SEPs) and Van Allen Belts. The radiation effects of space environment can not only cause degradation, but also disable electronic and electrical systems of the satellite equipment.

To ensure the reliability of the electronic circuits of the on-board equipment, it is necessary to determine the total accumulated (full) dose of radiation «TID» (Total Ionizing Dose), including exposure to charged single particles (single radiation effects (SEE) (Single Event Effects) causing single failures), – forming the radiation medium at a certain height and orbital orientation during the spacecraft flight. Even on high-altitude commercial airliners flying along polar routes, documented cases of avionics malfunctions due to radiation from outer space were recorded.

To reduce the effect TID and SEE, it is proposed to consider circuitry solutions that can prevent premature failures of the satellite electronic equipment exposed to space environment.

Circuitry solutions to parry probable satellite electronic equipment failures (due to the action of heavy charged particles, high-energy space protons and dose exposure) provide a reduction in the effect of breakdown currents on the semiconductor elements of large – scale integration (LSI) and very large – scale integration (VLSI) in satellite equipment.

Keywords:

space environment, ionizing radiation, single event effects, spacecraft, reliability, total ionizing dose

References

  1. Raikunov G.G. Ioniziruyushchee izluchenie kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov (Ionizing radiation of outer space and their impact on the onboard equipment of spacecraft), Moscow, Fizmatlit, 2013, 256 p.

  2. Space radiation effects on electronic components in low-earth orbit, NASA Practice, April 1996, Johnson Space Center (JSC), pp. 1 – 7.

  3. Steven H. Voldman. Latchup, John Wiley & Sons, 2008, 472 p.

  4. Edmonds L.D., Barnes C.E., Scheick L.Z. An introduction to space radiation effects on microelectronics, Pasadena, USA, NASA, Jet propulsion laboratory, California institute of technology, 2000, 83 p.

  5. Andrew Holmes-Siedle, Len Adams. Handbook of radiation effects, New York, Oxford University Press, 1994, 479 p.

  6. Chumakov A.I. Deistvie kosmicheskoi radiatsii na integral'nye skhemy (The effect of cosmic radiation on integrated circuits), Moscow, Radio i svyaz', 2004, 320 p.

  7. Robert Ecoffer. The radiation assessment process, 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 2015), 2015, Toulouse, France.

  8. Grigory Protopopov. Real radiation environment on-board of spacecrafts operating LEO, MEO and GEO, 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 2015), 2015, Toulouse, France.

  9. Getselev I.V., Podzolko M.V., Bezrodnykh I.P., Semenov V.T., Fadeev V.M., Khodnenko V.P. Voprosy elektromekhaniki, 2009, no. 1, pp. 29 – 34.

  10. Anisimov O.V., Kurchidis V.A. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=81079

  11. Krylov V.P., Pronin T.Yu. Trudy MAI, 2019, no. 105, available at: http://trudymai.ru/eng/published.php?ID=104194

  12. Piganov M.N., Shopin G.P., Nazarov A.A., Ovakimyan D.N. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109397

  13. Chirkov A.V., Kolmakov V.V. Patent 2405247 RF. Byull. 33, 27.11.2010.

  14. Fil'tser I.G. Patent 2322757 RF. Byull. 11, 20.04.2008.

  15. Fil'tser I.G. Patent 2510893 RF. Byull. 10, 10.04.2014.

  16. Chumakov E.I., Kachur D.K., Solov'ev S.V., Verkhoturov V.I. Poleznaya model' 110543. Byull. 32, 20.11.2011.

  17. Mikheev P.V., Kuzub E.P. Patent 2528270 RF. Byull. 25, 10.09.2014.

  18. Fedorov R.A. Nano - i mikrosistemnaya tekhnika, 2014, no. 6, pp. 46 - 47.

  19. Petukh N.N. Patent 2661282 RF. Byull. 20, 13.07.2018.

  20. Petukh N.N. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2018, vol. 5, no. 3, pp. 45 - 51.

  21. R. Dean Straw. The ARRL Handbook For Radio Communications, ARRL-the national association for Amateur Radio, Newington, 2006, 1265 p.

  22. Gorbachev G.N., Chaplygin E.E. Promyshlennaya elektronika (Industrial electronics), Moscow, Energoatomizdat, 1988, 320 p.

  23. BIS datchik toka 1382NU015, available at: http://www.zntc.ru/research/design-center/products/bis-datchika-toka-1382nu015.php

  24. Mikroskhemy integral'nye serii 1114. AEYaR.431000.379-02 TU, 2005, 28 p.

  25. Petukh N.N. Patent 2678718 RF. Byull. 4, 31.01.2019.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход