Studying parameters of combustion chamber section with jet-injection nozzle
DOI: 10.34759/trd-2020-112-2
Аuthors
*, **, ***Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
*e-mail: andreybaklanov@bk.ru
**e-mail: dima-krasnov-09@mail.ru
***e-mail: almazsdf@mail.ru
Abstract
Pressure losses, combustion completeness, temperature field unevenness at the outlet and hazardous substances release are one of the main parameters of a combustion chamber. The article presents a fuel combustion technique, in which an air jet is fed along nozzle axis, and the fuel is being inserted into the main flow by means of the radial trickles. The effect of the jet-injection nozzle setting into the combustion chamber section on the above listed parameters changing is being considered to estimate this fuel burning technique. The structure of the bench installation for the combustion chamber section testing, as well as modes at which these tests were being conducted are presented. Equipment, employed for measuring such parameters as flame temperature and concentration of hazardous substances in combustion products was described as well. To perform analysis and comparison of the obtained data, the experiments were conducted with the jet nozzle and the jet-injection nozzle being installed into the combustion chamber section in number of nine pieces. The section represents the 1/14 of the full-sized combustion chamber and consists of the outer and inner cases, and a flame tube with the with a frontend device, in which the nozzles are being installed. The flame tube is bounded by the side cooling walls on both sides. Nine nozzles are being installed in the section. Analysis of the component content (CO, NOx, CH) and combustion products was conducted, and combustion completeness was computed according to the obtained data. From the analysis results the inferences were drawn on the jet-injection nozzle application efficiency, and recommendations were given on the nozzles of selected type installation in the full-sized combustion chamber.
Keywords:
combustion chamber, gas turbine engine, nozzleReferences
-
Schlüter J., Schönfeld T., Poinsot T., Krebs W., Hoffmann S. Characterization of confined swirl flows using large eddy simulations, ASME Turbo Expo 2001: Power for Land, Sea, and Air (New Orleans, Louisiana, USA, June 4-7, 2001), 2001, vol. 2, pp. V002T02A027. DOI: 10.1115/2001-GT-0060
-
Harrison W.E., Zabarnick S. The OSD Assured Fuels Initiative–Military Fuels Produced from Coal, DoE Clean Coal Conference, Clearwater, FL, June 2007.
-
Lieuwen T., McDonell V., Petersen E., Santavicca D. Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability, ASME Journal of Engineering for Gas Turbines and Power, 2008, vol. 130 (1), pp. 011506. DOI: 10.1115/1.2771243
-
Moses C., Roets P. Properties, Characteristics and Combustion Performance of Sasol Fully Synthetic Jet Fuel, ASME Journal of Engineering for Gas Turbines and Power, 2009, vol. 131, no. 4. DOI: 10.1115/1.3028234
-
Markushin A.N., Baklanov A.V. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=91839
-
Markushin A.N., Baklanov A.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2013, no, 3, pp. 131 – 138.
-
Markushin A.N., Merkushin V.K., Byshin V.M., Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2010, no. 1, pp. 41 – 44.
-
Lieuwen T.C. and Yang V. Combustion Instabilities in Gas Turbine Engines. Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2005, vol. 210, 657 p.
-
Kiesewetter F., Konle M., and Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flashback in a Premix Burner with Cylindrical Mixing Zone, ASME Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, pp. 929 – 936. DOI: 10.1115/1.2747259
-
Danil’chenko V.P., Lukachev S.V., Kovylov Yu.L. et al. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Design of aircraft gas turbine engines), Samara: Izd-vo SNTs RAN, 2008, 620 p.
-
Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, 2010, 537 p.
-
Metechko L.B., Tikhonov A.I., Sorokin A.E., Novikov S.V. Trudy MAI, 2016, no. 85, available at: http://trudymai.ru/eng/published.php?ID=67495
-
Ashwani K. Gupta, D. G. Lilley, Nick Syred. Swirl Flows. Energy and engineering science series. Abacus Press, 1984, 475 p.
-
Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Aerospace MAI Journal, 2016, vol. 23, no. 3, pp. 47 – 57.
-
Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34989
-
Gokulakrishnan P., Fuller C.C., Klassen M.S., Joklik R.G, Kochar Y.N., Vaden S.N., Seitzman J.M.. Experiments and modeling of propane combustion with vitiation, Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038 – 2053. DOI: 10.1016/j.combustflame.2014.01.024
-
Lefebvre A.H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency, Journal of Engineering for Gas Turbines and Power, 1984, vol. 107, pp. 24 – 37. DOI:10.1115/1.3239693
-
Taylor S.C. Burning Velocity and the Influence of Flame Stretch, University of Leeds, 1991, 332 p.
-
Yi T., Gutmark E.J. Real-time prediction of incipient lean blowout in gas turbine combustors, AIAA Journal, 2007, vol. 45, no. 7, pp. 1734 – 1739. DOI: 10.2514/1.25847
-
Kanilo P.M. Energeticheskie i ekologicheskie kharakteristiki GTD pri ispol’zovanii uglevodorodnykh topliv i vodoroda (Energy and environmental characteristics of gas turbine engines while hydrocarbon fuels and hydrogen application), Kiev, Naukova dumka, 1987, 224 p.
Download