Eigenvalues of the Squire equation for laminar and developed turbulent boundary layers


DOI: 10.34759/trd-2020-112-5

Аuthors

Selim R. S.

Moscow Institute of Physics and Technology (National Research University), 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

e-mail: selim.rs@phystech.edu

Abstract

The stability of the eigenvalue problem for two-dimensional laminar and turbulent external flow over a flat plate was numerically studied using the theory of time linear stability. That is, the classical as well as the efficient approach are considered in detail for the eigenvalue problem: two different methods are studied for deducing the spectrum of eigenvalues, namely the finite difference method and the collocation method based on basic functions. The first approach of the physical model discretizing leads to algebraic equations with large matrices that are difficult to solve efficiently, while the second one creates matrices that are usually complete and have a large number of conditions. This problem is being discussed here in the Appendix to the Squire equation, which describes laminar and turbulent boundary layers. The average velocity profile of laminar boundary layers is obtained numerically. The dispersion ratio as a function of the wave number α and other flow parameters for the problem (such as, the Reynolds number) is being defined for two different velocity profiles. The algorithm is realized in Mathematica, and the calculated eigenvalues are being compared between the two different methods.

The linear stability of a small class of engineering problems can be studied by solving the Orr-Sommerfeld equation. The most famous examples of this are the Blasius Boundary layer and the plane of the Poiseuille flow. While the plane flow of the Poiseuille is strictly parallel, in the first case, an irrational argument relative to the parallel mean flow must be called in, in such a way that the system of stability equations, obtained by substituting small wave-like perturbations in the Navier-Stokes equations and linearization of the Blasius profile, will be reduced to the Orr-Sommerfeld equation. A numerical method for solving the Orr-Sommerfeld spectral equation in a two-dimensional boundary layer (β = 0) was studied by the Chebyshev collocation method for laminar and boundary layers. To obtain the spectrum of eigenvalues of the Squire equation for the background field of a developed turbulent boundary layer, a collocation method (pseudospectral) based on Chebyshev polynomials was used. The technique was debugged on the profile of Blasius and Mucker. It is obvious that an increase in the number of Chebyshev polynomials has a significant impact on the accuracy of determining eigenvalues for the Blasius and Miskeg profiles. The impact of Chebyshev polynomial degrees on the accuracy of determining the real and imaginary parts of the eigenvalues of the first mode for laminar and turbulent boundary conditions was considered.

Keywords:

incompressible viscous liquid, turbulent boundary layer, Squire's equation, collocation method, Chebyshev polynomials

References

  1. Selim R.S. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111352 DOI: 10.34759/trd-2019-109-5

  2. Drazin P.G. and Reid W.H. Hydrodynamic Stability, Cambridge University Press, 2004, 619 p.

  3. Shlikhting G. Boundary layer theory, London, Pergamon Press, 1955, 535 p.

  4. Peyret R. Spectral methods for incompressible viscous flow, Applied Mathematical Sciences, Springer-Verlag, New York, 2002, 434 p.

  5. Boyd J.P. Chebyshev and Fourier Spectral Methods, Dover, Mineola, New York 1150, 2001, 690 p.

  6. Shen J., Tang. T. Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006, 326 p.

  7. Kha L.V. Trudy MAI, 2016, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69519

  8. Khatuntseva O.N. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105673

  9. Zharov VA, Selim R.S. Heat transfer in the boundary layer in an incompressible fluid in terms of waveguide turbulence model, Journal of Physics: Conference Series, 2019, vol. 1309, available at: https://iopscience.iop.org/article/10.1088/1742-6596/1309/1/012017

  10. Benney D.J., Gustavsson H.L. A New Mechanism For Linear and Nonlinear Hydrodynamic Instability, Studies in Applied Mathematics, 1981, vol. 64, pp. 185 – 209, available at: https://doi.org/10.1002/sapm1981643185

  11. Jang P.S., Benney D.J., Gran R.L. On the origin of streamwise vortices in a turbulent boundary layer, Journal of Fluid Mechanics, 1986, vol. 169, pp. 109 – 123.

  12. Mathematica 5.0, User’s Guide. Wolfram Research, 2003, 1301 p.

  13. Musker A.J. Explicit expression for the smooth wall velocity distribution in turbulent boundary layer, AIAA Journal, 1979, vol.17(6), pp. 655 – 657.

  14. Elbarbary E.M.E., Kady El- M. Chebyshev finite difference approximation for the boundary value problems, Applied Mathematics and Computation, 2003, vol. 139, pp. 513 – 523. DOI: 10.1016/S0096-3003(02)00214-X

  15. Orszag S.A and Gottlieb D. Numerical Analysis of spectral Methods: Theory and Applications, SIAM, 1977, 179 p.

  16. Ibrahim M.A.K., Temsah R.S. Spectral methods for some singularly perturbed problems with initial and boundary layers, International Journal of Computer Mathematics, 1988, vol. 25, issue 1, pp. 33 – 48, available at: https://doi.org/10.1080/00207168808803658

  17. Mason J.C., Handscomb D.C. Chebyshev Polynomials. Chapman and Hall, CRC, New York, 2003, 360 p.

  18. McFadden G.B., Murray B.T., Boisvert R.F. Elimination of spurious eigenvalues in the Chebyshev tau spectral method, Journal Computational Physics, 1990, vol. 91, pp. 228 – 239. DOI:10.1016/0021-9991(90)90012-P

  19. Dongarra J.J., Straughan B., Walker D.W. Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems, Applied Numerical Mathematics, 1996, vol. 22, pp. 399 – 434, available at: https://doi.org/10.1016/S0168-9274(96)00049-9

  20. Melenk J.M., Kirchner N.P., Schwab C. Spectral Galerkin discretization for hydrodynamic stability problems, Computing, 2000, vol. 65, issue 2, pp. 97 – 118. DOI: 10.1007/s006070070014


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход