Model of the test radio signals simulator for aviation systems of the Earth surface surveying


DOI: 10.34759/trd-2020-112-11

Аuthors

Gusev S. N.*, Miklin D. V.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia

*e-mail: vka@mail.ru

Abstract

The article presents description of the model of the test radar signals simulator designed for calibration problems solving of air borne synthetic aperture radar systems (SAR). Control algorithms, employed in the simulator, for forming simulating trajectory signals, which reproduce virtual objects on radar images, are being considered as the subject of the study.

The necessity of solving this problem is stipulated, firstly, by the complexity of SAR calibration for complex objects, employing calibration polygons; secondly, by the lack of a uniform approach to the calibration means development based on simulators, employing the retranslation principle of the SAR probing signal. Thus, the purpose of the article consists in developing a model of the test radar signals, allowing reproducing the target environment with the specified set of object of various structure on the radar.

The proposed model is based on application of the theory of spatial and temporal signal processing in SAR and computer modelling techniques, from which the viewpoint the target simulating trajectory signal is the sum of the reflected signals from the point reflectors in a complex concentrated target. Each echo signal from the point reflector herewith should be computed with account for the position and the nature of the reflection in the specified direction.

The developed model peculiarity consists in frequency correction procedure integration into the algorithm for simulating trajectory signal formation. It allows compensating the geometry violation of the wave front and the change in Doppler frequency spectrum, caused by the objects reproduction at the certain distance from the simulator location.

The result of the work represents the model structure of the test radar signals simulator and the algorithm used in the model for computing the simulated trajectory signal of a complex concentrated target with account for the time delay, amplitude and frequency correction.

The developed model was tested while seminatural simulation of the reproduction process of virtual objects on radar. The seminatural simulation results presented in the work proved the approach correctness and the adequacy of the developed model.

The proposed model can be employed at:

– SAR calibration at different stages of development and design;

– developing of simulators for the signals programming;

– substantiating the trends of methods and means developing of radar systems calibration for the Earth’s surface observing.

Keywords:

radar system with synthetic aperture antenna, radar image, signal simulation, calibration, virtual object

References

  1. Verba V.S., Neronskii L.B., Turuk V.E. Perspektivnye tekhnologii tsifrovoi obrabotki radiolokatsionnoi informatsii kosmicheskikh RSA (Prospective technologies of spacecraft SAR radar information digital processing), Moscow, Radiotekhnika, 2019, 416 p.

  2. Zakharov A.I., Zherdev P.A., Borisov M.M., Sokolov A.B. Vserossiiskaya nauchnaya konferentsiya “Distantsionnoe zondirovanie zemnykh pokrovov i atmosfery aerokosmicheskimi metodami”: sbornik dokladov (Sankt-Peterburg, 16-18 June, 2004), Saint Petersburg Izd-vo RGGMU, 2004, vol. 3, pp. 47 – 50.

  3. Lepekhina T.A., Nikolaev V.I., Semenov M.A., Charykov I.V., Chikachev V.S. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2013, no. 5, pp. 26 - 29.

  4. Jirousek M., Döring B.J., Looser P., Schwerdt M. Linearity Measurements of an Accurate Transponder for Calibrating Future Spaceborne SAR Systems, Proc. of 9th European Conference on Synthetic Aperture Radar Conference EUSAR 2012, Nuremberg, Germany, 2012, pp. 67 - 70.

  5. Gusev S.N. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 6, pp. 368 - 377.

  6. Gorbunova A.A. Trudy MAI, 2011, no. 45, available at: http://trudymai.ru/eng/published.php?ID=25366&PAGEN_2=2

  7. Tyrykin S.V. Modeli radiolokatsionnykh ob''ektov, postroennye iz zavisimykh otrazhatelei, i imitatsiya ekhosignalov na ikh osnove (Radar objects models built from dependent reflectors, and echo signals imitation on their basis). Doctor’s thesis, Novosibirsk, NGTU, 2005, 229 p.

  8. Bulygin M.L., Mullov K.D. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=5704

  9. Valov S.V., Sirotin A.I., Shcherbakov S.V. Patent na izobretenie RU 2522502 C1, 20.07.2014.

  10. Belorutskii R.Yu. Tsifrovye metody imitatsii ekhosignalov RLS s sintezirovaniem apertury antenny (Digital methods for radar echoes simulation with antenna aperture synthesis), Doctor’s thesis, Tomsk, NGTU, 2014, 204 p.

  11. Verba V.S., Neronskii L.B, Osipov B.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Space borne radar systems for terrestrial observation), Moscow, Radiotekhnika, 2010, 680 p.

  12. Kuk Ch., Berndfil’d M. Radar signals, Academic Press Inc., London, 1967, 531 p.

  13. Kondratenkov G.S. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli (Radio vision. Radar Systems for Earth Remote Sensing), Moscow, Radiotekhnika, 2005, 368 p.

  14. Shirman Ya.D. Radioelektronnye sistemy (Radioelectronic systems), Moscow, Radiotekhnika, 2007, 560 p.

  15. Gusev S.N. et al. Trudy XXVIII Vserossiiskogo simpoziuma “Radiolokatsionnoe issledovanie prirodnykh sred'' (Sankt-Peterburg, 16-17 April 2013), Sankt-Peterburg, VKA im. A.F. Mozhaiskogo, 2013, pp. 419 – 429.

  16. Efimov E.N., Shevgunov T.Ya. Trudy MAI, 2013, no. 68, available at: http://trudymai.ru/eng/published.php?ID=41959

  17. Gusev S.N., Sakhno I.V., Khubbiev R.V. Trudy MAI, 2019, no. 104, available at: http://trudymai.ru/eng/published.php?ID=102169

  18. Vazhenin V.G. Polunaturnoe modelirovanie bortovykh radiolokatsionnykh sistem, rabotayushchikh po zemnoi poverkhnosti (Semi natural simulation of airborne radar systems operating along the Earth surface), Ekaterinburg, Izd-vo Ural'skogo universiteta, 2015, 208 c.

  19. Zvonarev V.V., Moroz A.V., Sherstyuk A.V. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=10568

  20. Gusev S.N., Kharzhevskii E.V. 7-ya mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “K.E. Tsiolkovskii – 160 let so dnya rozhdeniya. Kosmonavtika. Radioelektronika. Geoinformatika”: tezisy dokladov (Ryazan', 4-6 October 2017), Ryazan', RGRTU, 2017, pp. 316 - 320.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход