Object images employing for air medium parameters analysis near moving objects


DOI: 10.34759/TRD-2020-112-12

Аuthors

Kartukov A. V.*, Merkishin G. V.**, Nazarov A. N.***, Egorov V. V.****

,

*e-mail: ankartukov@mail.ru
**e-mail: merkishingv@mail.ru
***e-mail: prapor068@gmail.com
****e-mail: skb-4@bk.ru

Abstract

The tasks of monitoring, position assessing of the aircraft and interacting with the environment are of great importance in the aviation technology. At large distances, they are being solved mainly in the radio range (radar). At short ranges, the optical range methods are very effective near aircraft, since the wavelength is several orders of magnitude smaller and allows one to achieve high accuracy of the measured parameters.

Movement of various objects, such as a car, and plane, or a helicopter, is accompanied by their interaction with the air. The aerodynamic parameters of an object are necessary for calculating its speed characteristics and determining the possibilities for their improvement. Typically, the aerodynamic characteristics measurements are performed in wind tunnels employing the reduced models of the objects. The wind tunnel has a rather large and complex structure, requiring highly qualified service.

Registration of the aerodynamic parameters of the air medium occurring while the object moving is possible. Similar methods are used for the fuel quality analysis.

Employing the object images distortions allows obtaining all necessary information on the air medium parameters as well as the «clean» sky turbulence by relatively simple technical realization.

Further, a new technique for the fast and qualitative estimation of the moving object aerodynamic properties by distortions of the reference object image under the action of the turbulent wake. A set of reference objects installed along the path of movement allows determine the size of the turbulent wake, the impact of the structural elements of the object and evaluate their role in creating aerodynamic drag.

The illustrations to the article show the effect of a turbulent wake after a car travels on an image of a straight rail mounted on a track of movement. The white rod image blurred in its lower part, which is stipulated by the laminar layer transformation into the turbulent, is shown as well.

  1. Analysis of the results of the described experiments allows asserting that the electromagnetic waves of the optical range are sensitive enough to inhomogeneities of the air medium and can be used to obtain information on the “moving object-medium” system.

  2. The presented technique can be applied to analyze the aerodynamic parameters of new structural elements mounted on a moving object, without employing complex and expensive equipment.

Compared to the known technique of wind tunnels application, the described technique:

1) does not require manufacturing of a high-precision model of the object being studied;

2) does not require highly qualified servicing;

3) in some cases, an experimental study is possible, wich cannot be implemented in a wind tunnel (for example, for a helicopter);

4) does not require presence of the fastening and information retrieval elements in the working area, distorting the flow;

5) allows building 3D models of the “atmosphere-object” structure using a set of reference rails.

Keywords:

aerodynamic studies, laminar and turbulent flow, optical signal refraction, of image distortions analysis on the air medium heterogeneities

References

  1. Abashev V.M., PrudnicovA.G., Son E.E. Modern reseach areas of solid hypersonic ramjet engines, 29-th Congress of the International Council of the Aeronautical Sciences, 2014, URL: https://icas.org/icas_archive/icas2014/data/papers/2014_0904_paper.pdf

  2. Tarasenko O.S., Bodryshev V.V., Abasheev V.M. Trudy MAI, 2015, no. 83, available at: http://trudymai.ru/eng/published.php?ID=62032

  3. Berens T.M. et al. Numerical and Experimental investigations on Highly Integrated Subsonic air intakes, 52nd Aerospace Sciences Meeting, January 2014, National Harbor, MD, USA. DOI: 10.2514/6.2014-0722

  4. Kartukov A.V., Merkishin G.V., Nazarov A.N., Nikitin D.A. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74822

  5. Kartukov A.V., Merkishin G.V., Nazarov A.N., Nikitin D.A., Subbotin P.V. Elektrosvyaz', 2016, no. 12, pp. 46 – 48.

  6. Kozintsev V.I., Orlov V.M., Belov I.A. et al. Optiko-elektronnye sistemy ekologicheskogo monitoringa prirodnoi sredy (Optoelectronic environmental monitoring systems), Moscow, Izd-vo MGTU im. N.E. Baumana, 2002, 528 p.

  7. Deivis Sh.M., Landgrebe D.A., Fillips T.L. et al. Distantsionnoe zondirovanie: kolichestvennyi podkhod (Remote Sensing: A Quantitative Approach), Moscow, Nedra, 1983, 415 p.

  8. German M.A. Kosmicheskie metody issledovaniya v meteorologii (Space research methods in meteorology), Leningrad, Gidrometeoizdat, 1985, 351 p.

  9. Gupta A.K., Lilley D.G., Syred N. Swirl flows, Abacws Press, Tunbridge Wells, England, 1984, 475 p. DOI: http://dx.doi.org/10.1016/0010-2180(86)90133-1

  10. Huang Y., Yang V., Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, 2009, vol. 35, issue 4, pp. 293 - 364. DOI: 10.1016/j.pecs.2009.01.002

  11. Ignatkin Yu.M., Makeev P.V., Shomov A.I. Trudy MAI, 2013, no. 69, available at: http://trudymai.ru/eng/published.php?ID=43135

  12. Ignatkin Yu.M., Makeev P.V., Shomov A.I. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 11 – 15.

  13. Kartukov A.V..Merkishin G.V., Nazarov A.N., Nikitin D.A. 15-ya Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika-2016”, Moscow, Izd-wo MAI, 2016. pp. 58 - 59.

  14. Strakh poleta. Ch.1., 2009, available at: https://www.popmech.ru/adrenalin/9195-strakh-poleta-chast-1-fobiya/

  15. Belotserkovskii A.S. et al. Patent RU 2324953 C2, 20.05.2008.

  16. Baranov N.A., Belotserkovskii A.S., Kanevskii M.I., Pasekunov I.V. Patent RU 2324203 C1, 10.05.2008.

  17. Valis N.A. Rastrovye opticheskie pribory (Raster optical instruments), Moscow, Mashinostroenie, 1966, 207 p.

  18. Skokov I.V. Opticheskie interferometry (Optical interferometers), Moscow, Mashinostroenie, 1979, 128 p.

  19. Sharma K.K. Optics: principles and applications, Academic Press, 2006, 656 p.

  20. Horst Kuchling. Physik, Veb Fachbuchverlag Leipzig, 1980, 653 p.

  21. Merkishin G.V., Afonin K.N. 16- ya Mezhdunarodnaya Krymskaya konferentsiya “SVCh-tekhnika i telekommunikatsionnye tekhnologii”, Sevastopol', Veber, 2006, pp. 499 – 500.

  22. Mitrofanov A.A. Kontrol' sborki letatel'nykh apparatov: Opticheskie i lazernye metody (Aircraft Assembly Control: Optical and Laser Methods), Moscow, Mashinostroenie, 1989, 207 p.

  23. Merkishin G.V. Sistemy nablyudeniya: novye printsipy postroeniya (Surveillance systems: new design principles), Moscow, Radiotekhnika, 2010, 159 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход