Developing and experimental studying of dynamic characteristics of adaptive pressure pulsation dampener for the gas turbine engine fuel system


DOI: 10.34759/trd-2020-112-09

Аuthors

Radin D. V.*, Makaryants G. M.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: radin.danila.v@gmail.com
**e-mail: georgy.makaryants@gmail.com

Abstract

One of the key trends for the environmental and cost performance improving of modern gas turbine engines is the development of low-emission combustion chambers, which realize the concept of lean homogeneous mixture combustion. Pressure pulsations in the gas turbine engine fuel system can lead to unstable combustion in low-emission combustion chamber. The pump rotation frequency varies greatly depending on the engine operation mode. Thus, it is necessary to employ the adaptive Helmholtz resonator, being adjustable to the pump rotation frequency, to suppress the pulsations. In the work being presented, the adjustable element of the dampener was represented by the cavity volume. This study focuses on the developing and experimental studying of dynamic characteristics of the adaptive resonant-type pressure pulsations damper in the frequency range under consideration., An automatic design system was developed in the C# programming environment to perform theoretical studies. The experimental test bench consisted of a pump, a fuel cooling system, a resonator with a piston to change the cavity volume, and the imitation the fuel system. The pressure pulsations prior to and behind the resonator, as well as behind the pump, when the resonator was not installed, were being measured while testing. The resonator volume was being varied from minimum to maximum value. The efficiency of the adaptive Helmholtz resonator was being evaluated with the insertion attenuation factor, which represents the ratio of the pressure pulsations amplitude in the circuit without resonator to the pressure deviations amplitude in the circuit with the resonator. The frequency characteristic of the adjustable resonator efficiency represents the monotonically decreasing curve. The efficiency of the adjustable dampener increased by more than three times at the subresonant, and by more than half times at the superresonance frequencies compared to the non-adjustable one. The experimental data verified the theoretical computations with high accuracy. The adjustable Helmholtz resonator ensures much higher pressure pulsations damping than the non-adjustable one in the entire frequency range.

Keywords:

Helmholtz resonator, adaptive, fuel system, pulsations, combustion chamber, gas turbine

References

  1. Inozemtsev A.A., Sandratskii V.L. Gazoturbinnye dvigateli (Gas turbine engines), Perm’, OAO “Aviadvigatel’”, 2006, 1204 p.

  2. Arutyunov A.G., Dydyshko D.V., Endogur A.I., Kuznetsov K.V., Tolmachev V.I. Trudy MAI, 2016, no. 90, URL: http://trudymai.ru/eng/published.php?ID=74704

  3. Komarov E.M. Mashinostroenie i komp’yuternye tekhnologii, 2018, no. 5, pp. 9 – 29. URL: https://doi.org/10.24108/0518.0001394

  4. Lavrov V.N., Postnikov A.M., Tsererin N.V., Tsybizov Yu.I., Belyaev V.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. Aviatsionnaya i raketno-kosmicheskaya tekhnika, 2002, no. 2 (2), pp. 65 – 70.

  5. Dolgushev V.G., Ionov V.A., Kun N.V., Matveenko A.M. Trudy MAI, 2017, no. 95, URL: http://trudymai.ru/eng/published.php?ID=84461

  6. Nugumanov A.D., Sipatov A.M., Nazukin V.A. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2017, no. 50, pp. 139 – 147. DOI: 10.15593/2224-9982/2017.50.13

  7. Makar’yants G.M. Razrabotka metodov i sredstv snizheniya dinamicheskikh nagruzok v pnevmaticheskikh i gidromekhanicheskikh sistemakh (Development of methods and means of reducing dynamic loads in pneumatic and hydromechanical systems), Doctor’s thesis, Samara, 2014, 225 p.

  8. Prokof’ev A.B. Razrabotka metoda kompleksnogo analiza dinamiki i prochnosti truboprovodnykh sistem s gasitelyami kolebanii rabochei zhidkosti (Developing a technique for complex analysis of dynamics and strength of pipeline systems with dampeners of the working fluid pulsations), Doctor’s thesis, Samara, 2008, 342 p.

  9. Bobarika I.O., Demidov A.I. Trudy MAI, 2016, no. 85, URL: http://trudymai.ru/eng/published.php?ID=65646

  10. Timushev S.F., Fedoseev S.Yu. Trudy MAI, 2015, no. 83, URL: http://trudymai.ru/eng/published.php?ID=62080

  11. Shorin V.P. Ustranenie kolebanii v aviatsionnykh truboprovodakh (Pulsations elimination in aircraft pipelines), Moscow, Mashinostroenie, 1980, 156 p.

  12. Ortwig H. Experimental and analytical vibration analysis in fluid power systems, International Journal of Solids and Structures, 2005, no. 42, pp. 5821 – 5830. DOI:10.1016/j.ijsolstr.2005.03.028

  13. Kela L. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system, // Archive of Applied Mechanics, 2009, no. 79, pp. 1115 – 1125. DOI: 10.1007/s00419-008-0279-5

  14. Kela L. Adaptive Helmholtz Resonator in a Hydraulic System, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2010, no. 4, pp. 684 – 691.

  15. Bashta T.M. Gidravlicheskie privody letatel’nykh apparatov (Hydraulic actuators of flying vehicles), Moscow, Mashinostroenie, 1967, – 495 p.

  16. Bashta T.M. Raschety i konstruktsiya samoletnykh gidravlicheskikh ustroistv (Calculations and design of aircraft hydraulic devices), Moscow, Oborongiz, 1961, 475 p. 17.

  17. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermal-Physical Properties of Gases and Liquids), Moscow, Nauka, 1972, 720 p.

  18. Popov D.N., Panaiotti S.S., Ryabinin M.V. Gidromekhanika (Hydromechanics), Moscow, Izd-vo MGTU im. N.E. Baumana, 2014, 317 p.

  19. Shakhmatov E.V., Kryuchkov A.N., Gimadiev A.G. Dinamicheskie protsessy v gidravlicheskikh i pnevmaticheskikh sistemakh letatel’nykh apparatov (Dynamic processes in hydraulic and pneumatic aircraft systems), Samara, Izd-vo SGAU, 2011, 138 p.

  20. Zazhigaev L.S. Metody planirovaniya i obrabotki rezul’tatov fizicheskogo eksperimenta (Methods of physical experiment results planning and processing), Moscow, Atomizdat, 1978, 232 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход