The aircraft weaponry control technique in conditions of covert target surveillance


DOI: 10.34759/trd-2020-112-15

Аuthors

Efanov V. V.*, Zakota A. A.**, Volkova A. S.***, Izosimov A. V.

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: efanov55@mail.ru
**e-mail: 500vvs@rambler.ru
***e-mail: volan100@mail.ru

Abstract

The military aircraft weaponry includes both guided and unguided weapons, radar and optoelectronic surveying-and-guidance complexes intended for striking both air-born and ground targets and ensuring aircraft defense.

There are known technique and devices for aircraft weaponry control, which perform the target detection and capture, determine its parameters, choose the weapons and perpetrate its preparation and launch.

The disadvantages of the above-described systems consist in the fact that the weapon control in conditions of the covert target surveillance is not being ensured.

Selection of the channel with the passive type radar means as a leading channel of the weaponry control system ensures discrete operation mode for the active type radar means of the slave channel of the weaponry control system. The mode of periodical measuring of the range on target herewith, being followed by the radar means of the leading channel of the weaponry control system, with transition to the continuous position finding at achieving the preset range or by the crew command. It ensures the possibility of covert target attacking at its capturing.

Identification of the targets being followed by the radar means of both leading and slave channels of the weaponry control system is performed, in the absence thereof the reset mode of capturing by the radar means of the slave channel of the weaponry control system is set. By this, the probability of the target tracking and the aircraft interference immunity is increased.

Targets identification is realized by comparing the absolute value of the angular coordinates difference of the target viewfinding by the radar means of the leading and slave channels of the weaponry control system with the preset threshold. With this, exceedance of the above mentioned threshold is conceded only during the set time interval.

The stealthiness of the passive radar stations operation ensures higher viability under combat conditions due to the hampering of their detection and jamming.

However, unlike the active detection and ranging, active detection and ranging does not allow obtaining the object range by the data of receiving signas from the single station. This is undoubtedly a serious disadvantage.

Analysis of the methods ensuring indirect determining of the targets’ range and motion speed was performed. It is necessary to utilize the joint results of several (more than two) tracking stations, removed from each other by the known distance, and any of the

The kinematic distance measurement method (KDMM) being used while working with only a single target is known. The KDMM is realizing one of the information restoring methods, and it comes into action if other information restoring techniques are unavailable. The information about a target is being by the angular coordinates in the vertical or horizontal planes with the supporting height. The results of the KDMM modeling show that the absolute error of distance measurement makes up from hundreds of meters to several kilometers.

The purpose of the work is consists in accuracy increasing of the the range and speed of aerial target movement determining in the covert surveillance mode.

To eliminate the KDMM shortcomings the method of covert determining the target motion parameters is proposed. Its essence consists in obtaining the target motion parameters based on solving the vector equations that associate the range, speed, and bearing of a fighter-interceptor with a target. To obtain herewith the parameters necessary for the equations solving the interceptor should perform certain maneuvers.

The modelling results analysis of the proposed method and algorithms realizing it allows making the following conclusions:

— the method ensures the much more accurate distance-to-a-target computing;

— the maximum error value is below the resolution range level of the onboard distance measuring devices.

The suggested algorithms for determining the target range and motion speed are approved with the semi-natural complex composed of the thermal direction finder, target simulator, microcomputer, interface with the personal computer, and the programmed-mathematical support.

The technique for evaluating the effect of measuring resolution of the track angle, flight-path angle, and velocity variation dynamics on the target motion parameters determining accuracy is suggested.

While semi-natural tests conducting it was determined that the suggested technique and algorithms are efficient in general. Practical computations on determining the range to a target demonstrate that the errors introduced by the computing process significantly increase, if the Gauss method is being used for the task on the forward motion and the rational selection of the reference element is not accounted for. At the same time, the instrument errors impact can be significantly reduced by the reference element rational selection at each step.

A technique for target detection was suggested for the case of decoy flares employing. The technique consists in

– the airborne target detection,

– selection of angular speed of optoelectronic module (OEM) guidance by the crosshair superimposition on the target on the screen,

– transferring the OEM to the automatic target guidance mode,

– measuring current target range,

– converting the digital code of range into the video signal, displayed of the screen in the form of the digital caption.

The following factors are additionally determined:

– angular velocities of the target motion by measuring the time intervals of the target shifting relative to the preset angular positions;

– angular accelerations of motion by evaluating dynamics of the target angular velocities;

– dynamics of angular accelerations changing by subtracting the subsequent and previous values of the angular accelerations of the target.

With this, the following factors are recognized:

– the target tracking, if the values of change in dynamics of the angular accelerations of the target motion are less than the set value;

– the decoy flare tracking, if the values of change in dynamics of the angular accelerations of the target motion are more than the set value.

In this case a man-portable weapon complex gunner receives the information capturing the decoy flare.

Keywords:

air target movement parameters determining technique, target movement parameters determining algorithms, accuracy characteristics

References

  1. Bystrov R.P., Zagorin G.K., Sokolov A.V., Fedorova L.V. Passivnaya radiolokatsiya: metody obnaruzheniya ob"ektov (Passive radar: objects detecting methods), Moscow, Radiotekhnika, 2008, 320 p.

  2. Il’in E.M., Klimov A.E., Pashchin N.S., Polubekhin A.I., Cherevko A.G., Shumskii V.N. Vestnik SibGUTI, 2015, no. 2, pp. 7 – 20.

  3. Griffiths H.D., Baker C.J. An Introduction to Passive Radar, New York, Artech House, 2017, 110 p.

  4. Ispulov A.A., Mitrofanova S.V. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2017, no. 4, pp. 22 – 29.

  5. Zhitkov S.A., Ashurkov I.S., Zakharov I.N., Leshko N.A., Tsybul’nik A.N. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111392. DOI: 10.34759/trd-2019-109-14

  6. Drogalin V.V., Dudnik P.I., Kanashchenkov A.I. Zarubezhnaya radioelektronika, 2002, no. 3, pp. 64 – 94.

  7. Wang R., Deng Y. Bistatic SAR System and Signal Processing Technology, Springer, 2018, 286 p.

  8. Boers Y., Ehlers F., Koch W., Luginbuhl T., Stone L.D., Streit R.L. Track before Detect Algorithms, Journal on Advances in Signal Processing, 2008, Article ID 13932. DOI:10.1155/2008/413932

  9. Evdokimenkov V.N., Lyapin N.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105735

  10. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Sostoyanie i tendentsii razvitiya (Radar watch and guidance aircraft systems. State-of-the-art and trends of development), Moscow, Radiotekhnika, 2008, 432 p.

  11. Kiryushkin V.V., Volkov N.S. Teoriya i tekhnika radiosvyazi, 2019, no, 1, pp. 107 – 116.

  12. Bystrov R.P., Sokolov A.V., Chesnokov Yu.S. Vooruzhenie, politika, konversiya, 2004, no. 5, pp. 36 – 40.

  13. Gus’kov Yu.N., Zhiburtovich N.Yu. Radiotekhnika, 2002, no. 9, pp. 6 – 10.

  14. Tishchenko Yu.E., Fedunov B.E. Izvestiya RAN. Teoriya i sistemy upravleniya, 2006, no. 5, pp. 98 – 109.

  15. Pavlov V.I., Kolomeitsev V.N., Kalashnikov S.N. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, vol. 23, no. 2, pp. 216 – 224.

  16. Zakota A.A., Efanov V.V. et al. Patent № 2549552 RF, MPK7 F41G 7/26, 27.04.2015.

  17. Zakota A.A., Efanov V.V. et al. Patent № 2478898 RF, MPK7 F41G 7/26, 27.04.2013.

  18. Legkostup V.V., Markevich V.E. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki, 2018, no. 2 (112), pp. 5 – 11.

  19. Zakota A.A., Efanov V.V. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2018619777, 10.08.2018.

  20. Zakota A.A., Efanov V.V. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2018660657, 28.08.2018.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход