A technique for target run-in direction justification based on theory of risk when striking ground-based objects by aircraft complexes


DOI: 10.34759/trd-2020-112-19

Аuthors

Anan’ev A. V.*, Rybalko A. G.**, Lazorak A. V.***

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: sasha303_75@mail.ru
**e-mail: rybalkovvs@yandex.ru
***e-mail: lazorak@mail.ru

Abstract

This technique allows performing application planning of:

- The new military-purpose complexes, namely, small-class unmanned aerial vehicles (UAV SC),

- New weapons, such as free-falling unguided containers (FFUC), charged with the small caliber and capacity ammunition for damage inflicting to easily vulnerable ground objects.

The FFUC application specificity is its discharging from the carrier as a large-caliber ammunition, which requires special attention while the targeting point selection. The presence, in its turn, of asymmetrically located and different by their importance elements as parts of the ground target contributes to the several targeting points’ selection and, hence, determining rational direction of the approach.

Thus, for example, when employing large-caliber weapons against long narrow targets, it is necessary to select a certain rational angle of approach. At the same time, if the small-sized ground based objects are being attacked with the weapons, which scattering characteristics do not commensurate with the target size, the approach direction selection makes no difference, and targeting is being performed to the center of a target. The FFUC specifics and scattering parameters allow recognize “an aircraft on the open flying line” as a stretched area-type target with asymmetric location of the unequal by the damage probability and damage-inflicting scale vulnerable areas, rather than a small-sized single ground object.

Thus, the newly revealed property of the object of striking should be accounted for while rational selection of the target approach direction by the UAV CS and target striking by the FFUC.

The gist of the developed technique consists in the following:

- The ground target decomposition on n vulnerable zones, when the areas of these zones fit into the total area of the object;

- Criterion selecting (recovery time of the damaged units of vulnerable zones), and indicators defining (labor costs required to replace units of vulnerable zones) of damage inflicting risk for a ground target;

- Risk weight factors determining for each vulnerable area by the expert assessment method (Thomas Saati hierarchy analysis method);

- Determining probability of vulnerable zones hitting with the FFUC, with account for the targeting point disposition in range and direction, and the UAV SC accuracy characteristics;

- Employing the analytical expression of integral risk (the first multiplier is probability of the FFUC hitting the vulnerable zone, and the second one is the risk weight factor for each zone) for risk value determination when targeting point shifted by one step in range and direction for each iteration;

- Creating three-dimensional dependence (surface) of the integral damage risk on targeting point position on range and direction;

- Selecting rational direction of target approach as the result of revealing several local extremes of the integral risk function.

Thus, the target approach at the angle to the central axis of the ground-based target justified by the proposed technique ensures 20% increase in the inflicted damage compared to the target approach along the central axis only.

Keywords:

small-class striking unmanned aerial vehicle, target run-in direction, damage inflicting risk formula and coefficient, ground targets with asymmetric location of vulnerable areas

References

  1. Nachal'nik Upravleniya stroitel'stva i razvitiya sistemy primeneniya BpLA Genshtaba VS RF general-maior Aleksandr Novikov provel brifing dlya predstavitelei rossiiskikh i zarubezhnykh SMI, Ministerstvo Oborony Rossiiskoi Federatsii, 2018, available at: https://function.mil.ru/news_page/country/more.htm?id=12157872%40egNews

  2. Zubov V.N. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu, 2018, no. 5-6 (119-120), pp. 47 – 57.

  3. Freze V.R. Gumanitarnye problemy voennogo dela, 2018, no. 1 (14), pp. 106 – 112.

  4. Novak K.V., Gorokhova E.A., Toforov M.S. II-ya Voenno-nauchnaya konferentsiya «Robotizatsiya Vooruzhennykh Sil Rossiiskoi Federatsii: sbornik tudov, Moscow, GNIITsRT, 2017, pp. 187 – 195.

  5. Bespilotnyi letatel'nyi apparat «Feniks», 2019, available at: http://bastion-karpenko.ru/phoenix-bla

  6. Anan'ev A.V., Filatov S.V., Rybalko A.G. Voennaya mysl', 2019, no. 4, pp. 26 – 31.

  7. Anan'ev, A.V., Filatov S.V., Rybalko A.G. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 12, pp. 455 – 460.

  8. Rybalko A.G., Anan'ev A.V., Lazorak A.V., Klevtsov R.P. Vestnik VKO “Almaz-Antei”, 2019, no. 3(30), pp. 83 – 98.

  9. Anan'ev A.V., Rybalko A.G., Goncharenko V.I., Klevtsov R.P. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107869

  10. Venttsel' E.S. Vvedenie v issledovanie operatsii (Introduction to the Operations Research), Moscow, Sovetskoe radio, 1964, 391 p.

  11. Kirillov V.I., Groshev V.N. Teoriya boevoi effektivnosti i issledovaniya operatsii (Combat effectiveness theory and operations research), Monino, Voenno-vozdushnaya akademiya, 1969, 278 p.

  12. Mil'gramm Yu.G., Popov I.S. Boevaya effektivnost' aviatsionnoi tekhniki i issledovanie operatsii (Combat efficiency of aviation equipment and operations research), Moscow, VVIA im. prof. N. E. Zhukovskogo, 1970, 500 p.

  13. Bolkhovitinov O.V., Arbuzov I.V. et al. Boevye aviatsionnye kompleksy i ikh effektivnost' (Combat aircraft complexes and their effectiveness), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2008, 225 p.

  14. Makhnin V.L. Metodiki kolichestvennoi otsenki vozmozhnosti i effektivnosti boevogo primeneniya aviatsionnykh sredstv porazheniya po nazemnym i morskim ob"ektam (Quantitative techniques for possibility and effectiveness assessment of combat application of aircraft weapons on ground and sea objects: training manual), Voronezh, VUNTs VVS “VVA”, 2016, 130 p.

  15. Buravlev A.I., Brezgin V.S. Metody otsenki effektivnosti primeneniya vysokotochnogo oruzhiya (Methods for effectiveness evaluating of precision weapons), Moscow, ID Akademii Zhukovskogo, 2018, 232 p.

  16. Anan'ev A.V., Rybalko A.G., Goncharenko V.I. Izvestiya instituta inzhenernoi fiziki, 2019, no. 3 (53), pp. 66 – 72.

  17. Anan'ev A.V., Kashchenko G.A. Sovremennye naukoemkie tekhnologii, 2016, no. 9-1, pp. 9 – 12.

  18. Vishnyakov Ya.D., Radaev N.N. Obshchaya teoriya riskov (General theory of risks: training manual), Moscow, ITs “Akademiya”, 2008, 368 p.

  19. Andreev D.V. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96651

  20. Selivanov V.V., Babkin A.V., Gryaznov E.F. et al. Sredstva porazheniya i boepripasy (Weapons and ammunition: textbook), Moscow, MGTU im. N. E. Baumana, 2008, 984 p.

  21. Miropol'skii F.P., Pyr'ev E.V. et al. Aviatsionnye boepripasy (Aviation ammunition: textbook), Moscow, VUNC VVS «VVA im. prof. N.E. Zhukovskogo i Yu.A. Gagarina», 2010, 407 p.

  22. Vinchester Dzhim. Reaktivnye istrebiteli (Jet fighters), Moscow, Astrel', 2013, 320 p.

  23. Zhirokhov M.A. Opasnoe nebo Afganistana. Opyt boevogo primeneniya sovetskoi aviatsii v lokal'noi voine. 1979–1989 (Dangerous sky of Afghanistan. Experience of combat application of Soviet aviation in local war. 1979–1989), Moscow, Izd-vo Tsentrpoligraf, 2015, 319 p.

  24. Krasnov A.M. Trudy MAI, 2012, no. 61, available at: http://trudymai.ru/eng/published.php?ID=35640

  25. Krasnov A.M. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=27946

  26. Vostrikov O.V. Trudy MAI, 2011, no. 48, available at: http://trudymai.ru/eng/published.php?ID=26757

  27. Guseinov A.B., Makhovykh A.V. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74833

  28. Babich V.K. Aviatsiya v lokal'nykh voinakh (Aviation in local wars), Moscow, Voenizdat, 1988, 207 p.

  29. Saati T. Prinyatie reshenii pri zavisimostyakh i obratnykh svyazyakh. Analiticheskie seti (Decision making with dependencies and backward links. Analytical networks), Moscow, Lenand, 2015, 314 p.

  30. Rybalko A.G., Anan'ev A.V. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2019, no. 11, pp. 58 – 68, available at: http://akademiya-vvs.rf/images/docs/vks/11-2019/vks_11_2019.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход