Analysis of gas-dynamic compression based on modified Crocco pseudo-shock model


DOI: 10.34759/trd-2020-113-05

Аuthors

Kartovitskiy L. L.*, Levin V. M.1**, Yanovskiy L. S.2***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Central Institute of Aviation Motors, CIAM, 2, Aviamotornaya St., Moscow, 111116, Russia

*e-mail: levka_58@mail.ru
**e-mail: aerospace@mai.ru
***e-mail: yanovsky@ciam.ru

Abstract

The article proposes a Crocco pseudo-shock model modification allowing evaluate parameters distribution while super-sonic flow transition to the subsonic flow in the structure of the mathematical model of the supersonic ramjet power plant with the deceleration zone.

Numerical simulation of the gas-dynamic parameters in the of the pre-chamber diffuser (isolator) channel of a specified geometry was performed. As part of modified Crocco’s model, the pressure distribution can be approximated by the orthogonal Laguerre decomposition


 where coefficients bj are determined by the numerical solution of the variation problem of minimizing entropy producing. For the adequacy testing of the modified Crocco pseudo-shock model, experimental data was obtained from experimental testing of a dual-mode ramjet engine combustor with a pre-chamber diffuser. Verification of the calculated pressure distribution along the pseudo-shock development zone using the principle of minimum entropy producing was performed by comparing with the generalizing experimental dependence. A certain discrepancy between the experimental and computed data can be explained by no accounting for the entropy producing processes, as well as by the effect of the heat-mass transfer processes on the parameters changes in the pseudo-shock structure. The original Crocco model employs the condition of constancy of the total pressure p* = const, which means

.

 This assumption does not produce an adequate result. Thus, the solution of the original Crocco model for the compression zone leads to the values of M>2.0 - 2.5 in the cross section of the dissipation layers confluence. From physical estimation, the Mach number should approach 1.0 in the confluence zone of the dissipation layers, which can be achieved by modifying the Crocco pseudo-shock dissipative model. The model is intended for parametric studies as a part of the ramjet mathematical models.

Keywords:

gas-dynamic compression, pseudo-shock, mathematical model, dual-mode ramjet

References

  1. Penzin V.I. Eksperimental'noe issledovanie otryvnykh techenii v kanalakh (Experimental study of separated flows in the channels), Moscow, Izd-vo TsAGI, 2009, 280 p.

  2. Krokko L. Odnomernoe rassmotrenie gazovoi dinamiki ustanovivshikhsya techenii. Kn. Osnovy gazovoi dinamiki (One-dimensional consideration of the gas dynamics of steady-state flows. Basics of gas dynamics), Moscow, Izd-vo Inostrannoi literatury, 1963, 702 p.

  3. Gus'kov O.V., Kopchenov V.I., Lipatov I.I. et al. Protsessy tormozheniya sverkhzvukovykh techenii v kanalakh (The processes of supersonic flows inhibition in channels), Moscow, Fizmatlit, 2008, 168 p.

  4. Waltrup P.J., Billig F.S. Structure of Shock Waves in Cylindrical Ducts, AIAA Journal, 1973, vol. 11, no. 10, pp. 1404 – 1408. DOI: http://dx.doi.org/10.2514/3.50600

  5. Waltrup P.J., Billig F.S. Prediction of Precombustion Wall Pressure Distributions in Scramjet Engines, Journal of Spacecraft, 1973, vol. 10, no. 9, pp. 620 - 622. DOI:10.2514/3.27782

  6. Shcherbakov M.A., Marchukov E.Yu., Kartovitskii L.L. Trudy MAI, 2010, no. 41. URL: http://trudymai.ru/eng/published.php?ID=23816

  7. Gimranov E.G. Vestnik UGATU, 2006, vol. 7, no. 2 (15), pp. 61 - 70.

  8. Gurylev V.G., Eliseev S.N. Uchenye zapiski TsAGI, 1972, vol. 3, no. 3, pp. 25 – 35.

  9. Gogish L.V., Stepanov G.Yu. Trudy Instituta mekhaniki MGU, 1971, № 11.

  10. Azevedo D.J., Liu C.S. Engineering approach to the prediction of shock patterns in bounded high-speed flows, AIAA, 1993, vol. 31, no. 1, pp. 83 - 90. DOI:10.2514/3.1132l

  11. Medvedev A.E. Prikladnaya mekhanika i tekhnicheskaya fizika, 2014, vol. 55, no. 6, pp. 43 - 59.

  12. Takeshi K. Prediction of Pseudo-Shock Position in a Long Duct Using the Momentum Balance Model, Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, vol. 55, no. 3, pp. 199 - 201. DOI: 10.2322/tjsass.55.199

  13. Zimont V.L., Levin V.M., Meshcheryakov E.A. Fizika goreniya i vzryva, 1978, vol. 14, no. 4, pp. 23 – 36.

  14. Gimranov E.G. Tormozhenie vyazkogo sverkhzvukovogo potoka (“psevdoskachok”) v kanalakh dvigatelei letatel'nykh apparatov (Braking of a viscous supersonic flow (“pseudo-shock”) in the channels of vehicle engines), Ufa, UGATU, 1992, Ch. I, pp. 121 - 132.

  15. Meshcheryakov E.A., Yashina V.V. Uchenye zapiski TsAGI, 2013, vol. XLIV, no. 5, pp. 46 - 63.

  16. Gimranov E.G., Mikhailov V.G. Vestnik UGATU, 2006, vol. 7, no. 1 (14), pp. 153 - 160.

  17. Gimranov E.G. Vestnik UGATU, 2007, vol. 9, no. 1 (19), pp. 3 - 7.

  18. Lapin Yu.V. Turbulentnyi pogranichnyi sloi v sverkhzvukovykh potokakh gaza (Turbulent boundary layer in supersonic gas flows), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1982, 312 p.

  19. Aleksandrov V.N., Bytskevich V.M., Verkholomov V.K. et al. Integral'nye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta (Integral ramjet engines on solid fuels. Fundamentals of theory and calculation), Moscow, Akademkniga, 2006, 343 p.

  20. Tamaki T. Tomita Y. Yamane R. A study of pseudo-shock: 1st Report, λ-type pseudo-shock, Bulletin JSME, 1970, vol. 13, no. 55, pp. 51 – 58. DOI: http://dx.doi.org/10.1299/jsme1958.13.51

  21. Tamaki T. Tomita Y. Yamane R. A study of pseudo-shock: 2nd Report, x-type pseudo-shock, Bulletin JSME, 1971, vol. 14, no. 74, pp. 807 – 817. DOI: https://doi.org/10.1299/jsme1958.14.807

  22. 2. Gun'ko Yu.P., Shumskii V.V. Teplofizika i aeromekhanika, 2014, vol. 21, no. 4, pp. 521 - 530.

  23. Zimont V.L., Ostras' V.N. Uchenye zapiski TsAGI, 1974, vol. V, no. 3, pp. 40 – 48.

  24. Prigozhin I. Sovremennaya termodinamika. Ot teplovykh dvigatelei do dissipativnykh struktur (Modern thermodynamics. From heat engines to dissipative structures), Moscow, Mir, 2008, 464 p.

  25. Khatuntseva O.N. Trudy MAI, 2018, no. 102. URL: http://trudymai.ru/eng/published.php?ID=98854

  26. Levin V.M. Fizika goreniya i vzryva, 2010, vol. 46, no. 4, pp. 45 - 55.

  27. Levin V.M., Karasev V.N., Kartovitskii L.L. et al. Fizika goreniya i vzryva, 2013, vol. 49, no. 6, pp. 68 - 75.

  28. Levin V.M., Karasev V.N., Kartovitskii L.L. Aerospace MAI Journal, 2009, vol. 16, no. 5, pp. 78 - 87.

  29. Bagdasaryan G.E., Mikilyan M.A., Vardanyan I.A., Panteleev A.V. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100822

  30. Kutateladze S.S, Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and mass transfer and friction in turbulent boundary layer), Moscow, Energiya, 1972, 342 p.

  31. Levin V.M., Karasev V.N., Kartovitskii L.L. et al. Trudy TsAGI, 2015, no. 2736, pp. 28 - 34.

  32. Karasev V.N., Levin V.M. Trudy MAI, 2013, no. 64. URL: http://trudymai.ru/eng/published.php?ID=36551

  33. Ezrokhi Yu.A., Drygin A.S., Kizeev I.S., Selivanov O.D., Fokin D.B. Trudy MAI, 2016, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91846

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход