Semi-natural modeling of digital data transmission channel in the ultrasonic wavelength range


DOI: 10.34759/trd-2020-113-08

Аuthors

Gusev S. N.*, Miklin D. V.*, Moroz A. V.*, Sahno I. V.*, Sherstuk A. V.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mail.ru

Abstract

The presented work describes the laboratory installation for semi-natural modeling of the data channel in the ultrasonic wavelength range. Semi-natural modelling is understood as a study of a system on the simulating installation with real equipment elements inclusion into the model structure (in this case it is software algorithmic support of the digital receiver-transmitter track). The laboratory installation is meant for transmission line simulation of radar and optoelectronic information to the data receipt and processing point at the design stage. The purpose of the work consists in transmission quality improving of the spacecraft trajectory signal by the radar with the synthesized aperture antenna (SSAR). In the following, the SSAR laboratory breadboard will be developed, which will include the breadboard of ultrasonic SAR and ultrasonic data transmission system (UDTS).

The installation includes the hardware (PC, amplifiers, power supplies, ultrasonic sensors) and the software part. To create the Doppler effect in the channel, the possibility of linear or nonlinear (with or without acceleration) movement of the transmitter or receiver was realized. The receiver is implemented based on software signals reception and processing.

The result of the work is the developed laboratory installation of the OSPA integrated into the SAR layout based on the location acoustic complex, which allows obtaining the quality assessment of information packages transmiting.

The laboratory installation can be applied in scientific research and training when studying radio engineering disciplines.

Keywords:

semi-natural modeling, ultrasonic channel, software signals reception, digital quadrature receiver, frequency and phase frequency auto-tuning, bit error probability

References

  1. Efimov A.V., Zaitsev S.E., Savosin G.V., Titov M.P., Tsvetkov O.E. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2016, no. 3, pp. 24 – 36.

  2. Zanin K.A., Mit’kin A.S., Moskatin’ev I.V. Vestnik NPO imeni S.A. Lavochkina, 2016, no. 2, pp. 61 – 68.

  3. Lepekhina T.A., Nikolaev V.I. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2013, no. 1, pp. 53 – 60.

  4. Shtager E.A. Rasseyanie radiovoln na telakh slozhnoi formy (Radio-waves scatter on complex shape bodies), Moscow: Radio i svyaz’, 1986, 184 p.

  5. Semin A.I., Trofimov V.N. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2005, no. 3, pp. 147 – 157.

  6. Kozlov A.V., Kosynkin A.I., Moroz A.V., Sakhno I.V., Sokolov S.M., Pimenov V.F., Sherstyuk A.V. Trudy XXVIII Vserossiiskogo simpoziuma “Radiolokatsionnoe issledovanie prirodnykh sred”, Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2013, no. 1, vol. 1, pp. 419 – 429.

  7. Shkapskii G.I., Kurnina D.V., Smolin V.P. Tekhnicheskie nauki – ot teorii k praktike. 2012, no. 7-1, pp. 86 – 98.

  8. Sukhanov D.Ya., Latipova L.M. Izvestiya vuzov. Fizika, 2013, vol. 56, no. 8-2, pp. 145 – 148.

  9. Semin A.I., Trofimov V.N. Izvestiya RAN. Teoriya i sistemy upravleniya, 2005, no. 4, pp. 143 – 157.

  10. Zvonarev V.V., Moroz A.V., Sherstyuk A.V. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105683

  11. Fransois Vincent, Bernard Mouton, Eric Chaumette, Claude Nouals, Olivier Besson. Synthetic aperture radar demonstration kit for signal processing education, 32nd International Conference on Acoustics, Speech, and Signal Processing. “ICASSP – 2007”, 2007, vol. 3, pp. 709 – 712. DOI: http://dx.doi.org/10.1109/ICASSP.2007.366778

  12. Trofimov V.N. Zhurnal Radioelektroniki, 2019, no. 9. URL: http://jre.cplire.ru/jre/sep19/index.html

  13. Moroz A.V., Pimenov V.F., Sokolov S.M. Yubileinaya 70-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya (SPbNTORES): materialy konferentsii, Saint Petersburg, SPbNTORES imeni A.S. Popova, 2015, vol. 1, pp. 78 – 79.

  14. Glybin A.A., Burtsev Yu.V., Lychagin A. Yu., Cherevan’ D.V., Fuzhenko O.A., Moroz A.V. Nanoindustriya, 2019, no. S (89), pp. 463 – 469. DOI: 10.22184/NanoRus

  15. Alfeev V.Yu., Artyushin V.V. et al. Voennye sistemy kosmicheskoi svyazi (Military space communications systems), Saint Petersburg, VKA im. A.F. Mozhaiskogo, 2003, 451 p.

  16. Peredacha dannykh. Terminy i opredeleniya. GOST 17657-79. (Data transmission. Terms and definitions. GOST 17657-79), Moscow, Izdatel’stvo standartov, 1980. URL: http://docs.cntd.ru/document/1200015668

  17. Slepov N. Elektronika: Nauka, Tekhnologiya, Biznes, 2002, no. 5, pp. 22 – 31.

  18. Kozlov I.V., Nabokov S.A., Smirnov A.S. Trudy MAI, 2011, no. 45. URL: http://trudymai.ru/eng/published.php?ID=25408&PAGEN_2=2

  19. Bryzgalov A.P., Koval’chuk I.V., Khnykin A.V., Shevela I.A., Yusupov R.G. Trudy MAI, 2011, no. 43. URL: http://trudymai.ru/eng/published.php?ID=24734

  20. Serkin F.B., Vazhenin N.A., Veitsel’ V.V. Trudy MAI, 2015, no. 86. URL: http://trudymai.ru/eng/published.php?ID=67824

  21. Martirosov V.E., Alekseev G.A. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=47082

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход