On damping properties whiskered layer of modified fibre composites


DOI: 10.34759/trd-2020-114-03

Аuthors

Kriven G. I.*, Makovskii . V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: Kriven_Galina@inbox.ru
**e-mail: Makovsky93@mail.ru

Abstract

In this work, for the first time, the effective dynamic properties of a whiskerized layer in modified composites are studied taking into account the structural characteristics of the interphase layer – the length of whiskers, the volumetric content of whiskers, and their mechanical properties. In the case of pure shear along the whiskers, the effective dynamic properties of the interphase layer obtained by the three-phase method and the Reuss method are estimated. In the calculation, we use two types of interfacial matrix: epoxy and viscoelastic polymer at temperatures below the glass transition temperature. Comparison of the obtained plots indicates the effect of a significant increase (by about an order of magnitude) of the effective loss modulus of the whiskerized layer if a viscoelastic polymer is used at a temperature below the glass transition temperature instead of an epoxy matrix. We will also show that an increase in the stiffness of whiskers has a positive effect on the effective characteristics of the interfacial layer, however, we note that this effect manifests itself only at very low volume fractions of the binder in the layer, in the rest of the range the effect is not so pronounced. high effective dissipative properties are realized, which opens up prospects for modeling and predicting modified fiber composites with abnormally high damping properties at the same time sufficiently high mechanical characteristics.

Note that the use of a more accurate procedure for calculating the effective properties, based on the three-phase method, gives somewhat large values ​​for the effective characteristics of the loss modulus, but does not fundamentally change the dependence for the loss modulus. It is important to note that the proposed new procedure for modifying a fiber composite leads to a significant increase in the effective loss modulus, when the effective loss modulus can be significantly increased in comparison with modified composites obtained on the basis of only an epoxy matrix and even in comparison with the loss modulus of the epoxy matrix itself (more than 40 times compared to the loss modulus of an epoxy matrix). At the same time, we note that the effective mechanical properties change insignificantly, and all the useful characteristics and features of the modified fiber composites remain invariably high.

Keywords:

whiskers, fiber composites, viscoelastic binder, micromechanics, effective loss modulus, damping properties

References

  1. Chandra R., Singh S.P. and Gupta K. Damping studies in fiber-reinforced composites – a review, Composite Structures, 1999, vol. 46, pp. 41 – 51.

  2. Fisher F.T., Brinson L.C. Viscoelastic interphases in polymer-matrix composites: Theoretical models and finite element analysis, Composites Science Technology, 2011, vol. 61, pp. 731 – 748. DOI: 10.1016/s0266-3538(01)00002-1

  3. Meaud J., Sain T., Hulbert G.M., Waas A.M. Analysis and optimal design of layered composites with high stiffness and high damping, International Journal of Solids and Structures, 2013, vol. 50 (9), pp. 1342 – 1353. DOI: 10.1016/j.ijsolstr.2013.01.014

  4. Lakes R.S. High damping composite material. Effect of structural hierarchy, Journal of Composite Materials, 2002, vol. 36, no. 3, pp. 287 – 297. DOI: 10.1177/0021998302036003538

  5. Berthelot J.M., Assarar M., Sefrani Y., Mahi A.E. Damping of composite materials and structures, Composite Structures, 2008, vol. 85, pp. 189 – 204. DOI: 10.1016/j.compstruct.2007.10.024

  6. Yu L., Ma Y., Zhou C., Xu H. Damping efficiency of the coating structure, International Journal of Solids and Structures, 2005, vol. 42, pp. 3045 – 3058. DOI: 10.1016/J.IJSOLSTR.2004.10.033

  7. Wei P.J., Huang Z.P. Dynamic effective properties of the particle reinforced composites with viscoelastic interphase, International Journal of Solids and Structures, 2004, vol. 41, no. 24, pp. 6993 – 7007.

  8. Klimov D.A., Myktybekov B., Nizovtsev V.E., Ukhov P.A. Trudy MAI, 2011, no. 46. URL: http://trudymai.ru/eng/published.php?ID=26114

  9. Klimov A.K., Klimov D.A., Nizovtsev V.E., Ukhov P.A. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/eng/published.php?ID=41486

  10. Lin Y., Ehlert G.J., Sodano H.A. Increased interface strength in carbon fiber composites through a ZnO nanowire interphase, Advanced Functional Materials, 2009, vol. 19, no. 16, pp. 2654 – 2660. DOI: 10.1002/adfm.200900011

  11. Wang Y., Tang Z., Liang X., Liz-Marzan L.M., Kotov N.A. SiO2-Coated CdTe nanowires: bristled nano centipedes, Nano Letters, 2004, vol. 4, no. 2, pp. 225 – 231. DOI: 10.1021/nl0349505

  12. Galan U., Lin Y., Ehlert G.J., Sodano H.A. Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated fibers, Composites Science and Technology, 2011, vol. 71, pp. 946 – 954. DOI: 10.1016/J.COMPSCITECH.2011.02.010

  13. Sager R.J., Klein P.J., Lagoudas D.C., Zhang Q., Liu J., Dai L. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix, Composites Science and Technology, 2009, vol. 69, pp. 898 – 904.

  14. Garcia E.J., Wardle B.L., Hart A.J., Yamamonj N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ, Composites Science and Technology, 2008, vol. 68, no. 9, pp. 2034 – 2041.

  15. Sharma S.P., Lakkad S.C. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites, Surface & Coatings Technology, 2010, vol. 205 (2), pp. 350 – 355. DOI: 10.1016/j.surfcoat.2010.06.055

  16. Gusev A.A., Lurie S.A. Loss amplification effect in multiphase materials with viscoelastic interfaces, Macromolecules, 2009, vol. 42, no. 14, pp. 5372 – 5377. URL: https://doi.org/10.1021/ma900426v

  17. Lurie S., Minhat M., Tuchkova N., Soliaev J. On remarkable loss amplification mechanism in fiber reinforced laminated composite materials, Applied Composite Materials, 2014, vol. 21 (1). DOI: 10.1007/s10443-013-9371-2

  18. Lurie S.A., Minhat M., Tuchkova N. Estimation of effective dynamic properties of bristled fiber composite materials based on self-consistent Eshelby method, Journal of Engineering Mathematics, 2015, vol. 95, no. 1, pp. 7 – 29. DOI: 10.1007/s10665-014-9719-0

  19. Volkov-Bogorodsky D.B., Lurie S.A., Kriven G.I. Modeling the effective dynamic properties of fiber composites modified across length scales, Nanoscience and Technology: An International Journal, 2018, vol. 9, no. 2, pp. 117 – 138. DOI: 10.1615/nanoscitechnolintj.2018026537

  20. Guz I.A., Rodger A.A., Guz A.N., Rushchitsky J.J. Predicting the properties of micro- and nanocomposites: From the microwhiskers to the bristled nano-centipedes, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2008, vol. 366 (1871), pp. 1827 – 1833. DOI: 10.1098/rsta.2007.2189

  21. Guz I.A., Guz A.N., Rushchitsky J.J. Modelling properties of micro- and nanocomposites with brush-like reinforcement, Materialwissenschaft und Werkstofftechnik, 2009, vol. 40, no. 3, pp. 154 – 160. DOI: 10.1002/mawe.200700421

  22. Kundawal S.I., Ray M.C. Micromechanical analysis of fuzzy fiber reinforced composites, International Journal of Mechanics and Materials in Design, 2011, vol. 7, pp. 149 — 166. DOI: 10.1007/s10999-011-9156-4

  23. Chatzigeorgiou G., Siedel G.D., Lagoudas D. Effective mechanical of "fuzzy fiber"’ composites, Composites Part B: Engineering, 2012, vol. 43, pp. 2577 – 2593. URL: https://doi.org/10.1016/j.compositesb.2012.03.001

  24. Solyaev Yu.O. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/eng/published.php?ID=24316

  25. Kurochkin A.V. Trudy MAI, 2013, no. 68. URL: http://trudymai.ru/eng/published.php?ID=41998

  26. Lur’e S.A., Dudchenko A.A., Nguen D.K. Trudy MAI, 2013, no. 75. URL: http://trudymai.ru/eng/published.php?ID=49674

  27. Christensen R.M. Mechanics of composite materials, Dover Publications, New York, 2005, 384 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход