Gas-dynamic computation of experimental installation for gas turbine engine section testing


DOI: 10.34759/trd-2020-114-05

Аuthors

Baklanov A. V.*, Krasnov D. S.**, Garaev A. I.***

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: andreybaklanov@bk.ru
**e-mail: dima-krasnov-09@mail.ru
***e-mail: almazsdf@mail.ru

Abstract

When designing test benches for of the combustion chamber sections testing performing it is necessary to perform gas dynamic calculation to determine parameters and characteristics such as the rate of fuel gas and air, the air velocity at the section inlet, and operational time of the experimental installation when employing a limited number of liquefied gas cylinders. It is necessary as well to know the range of a gas rate measurement and pressure on the measuring area of the gas main of the experimental installation to sel ect appropriate measuring devices

The combustion chamber section represents a 1/14 part of a full sized combustion chamber and consists of an outer casing, inner casing, a flame tube with a frontend device, in which the nozzles are installed. The fire tube is bounded by side cooling walls on both sides. Nine nozzles are being installed in the combustion chamber section.

The test bench includes a source of compressed air and a central main line leading to the section. Gas is being fed to the section collector through the fuel-feeding system and then to the flame tube head, which distributes it among the nozzles.

The following was determined fr om the computation results:

  1. The operation time of the experimental installation when employing one fifty-liters cylinder of the compressed gas.

  2. The excess-air factor was revealed, at which the temperature of hot gases in the combustion chamber section, operating on propane, would correspond to the T4* = 1110 K.

  3. The air rate value necessary for obtaining the air velocity at the section inlet, which is equal to the air velocity at the combustion chamber inlet under the engine conditions.

  4. A value of the gas rate to equip the gas main with the appropriate flow-metering device.

Keywords:

combustion chamber; gas turbine engine, nozzle, combustion chamber section, experimental installation

References

  1. Metechko L.B., Tikhonov A.I., Sorokin A.E., Novikov S.V. Trudy MAI, 2016, no. 85. URL: http://trudymai.ru/eng/published.php?ID=67495

  2. Lefebvre A.H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency, Journal of Engineering for Gas Turbines and Power, 1984, vol. 107, pp. 24 – 37. DOI: 10.111,5/1.3239693

  3. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, 2010, 537 p.

  4. Gokulakrishnan P., Fuller C.C., Klassen M.S., Joklik R.G, Kochar Y.N., Vaden S.N., Seitzman J.M. Experiments and modeling of propane combustion with vitiation, Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038 – 2053. DOI: 10.1016/j.combustflame.2014.01.024

  5. Markushin A.N., Baklanov A.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2013, no. 3, pp. 131 – 138.

  6. Baklanov A.V., Neumoin S.P. A technique of gaseous fuel and air mixture quality identification behind the swirl burner of gas turbine engine combustion chamber, Russian Aeronautics, 2017, no. 60, pp. 90 – 96. DOI: 10.3103/S1068799817010135

  7. Schlüter J., Schönfeld T., Poinsot T., Krebs W., Hoffmann S. Characterization of confined swirl flows using large eddy simulations, ASME Turbo Expo 2001: Power for Land, Sea, and Air (New Orleans, Louisiana, USA, June 4-7, 2001), 2001, vol. 2, pp. V002T02A027. DOI: 10.1115/2001-GT-0060

  8. Harrison W., Zabarnick S. The OSD Assured Fuels Initiative–Military Fuels Produced from Coal, DoE Clean Coal Conference, Clearwater, FL, June 2007.

  9. Lieuwen T., McDonell V., Petersen E., Santavicca D. Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability, ASME Journal of Engineering for Gas Turbines and Power, 2008, vol. 130 (1), pp. 011506. DOI: 10.1115/1.2771243

  10. Danil’chenko V.P., Lukachev S.V., Kovylov Yu.L. et al. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Design of aircraft gas turbine engines), Samara, Izd-vo SNTs RAN, 2008, 620 p.

  11. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V. et al. Nekotorye voprosy proektirovaniya aviatsionnykh gazoturbinnykh dvigatelei (Some issues of aircraft gas turbine engines designing), Samara, SNTs RAN, 2002, 527 p.

  12. Markushin A.N., Baklanov A.V. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91839

  13. Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2012, no. 59. URL: http://trudymai.ru/eng/published.php?ID=34989

  14. Lieuwen T.C. and Yang V. Combustion Instabilities in Gas Turbine Engines. Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2005, vol. 210, 657 p.

  15. Kiesewetter F., Konle M., and Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flashback in a Premix Burner with Cylindrical Mixing Zone, ASME Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, pp. 929 – 936. DOI: 10.1115/1.2747259

  16. Taylor S.C. Burning Velocity and the Influence of Flame Stretch, University of Leeds, 1991, 332 p.

  17. Yi T., Gutmark E.J. Real-time prediction of incipient lean blowout in gas turbine combustors, AIAA Journal, 2007, vol. 45, no. 7, pp. 1734 – 1739. DOI: 10.2514/1.25847

  18. Baklanov A.V. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 73 – 85.

  19. Baklanov A.V., Markushin A.N., Tsyganov N.E. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2014, no. 3, pp. 13 – 18.

  20. Nazyrova R.R Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77448


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход