Method of lunar landing stations’ coordinates measurements using spacecraft optical television means


DOI: 10.34759/trd-2020-114-12

Аuthors

Vernigora L. V.*, Kasmerchuk P. V.**, Sysoev V. K.***, Dmitriev A. O.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: vlv@laspace.ru
**e-mail: pavel.kazmerchuk@gmail.com
***e-mail: SysoevVK@laspace.ru
****e-mail: dao@laspace.ru

Abstract

The paper describes use of optical laser beacons, with the help of which it is possible accurately and uniquely to determine the location of lunar landing stations when they are observed by optical television means of orbiting spacecraft. The optical beacon installed on the lunar landing station will be detected by the onboard television camera of the orbiter on the basis of a significant excess of light flux above the level of background noise.

Three coordinate systems are used to construct the method of lunar landing stations’ coordinates measuring: the International Celestial Reference System (ICRS), the Bound Coordinate System and the Instrument Coordinate System.

The presented technique is based on the quaternion algebra (Rodrigue-Hamilton’s parameters). Rodrigue-Hamilton’s parameters are widely used in analytical mechanics and they are closely related to Euler’s angles and an end-turn vector. They clearly determine the orientation of the solid body in space and do not degenerate by any parameters of rotation. Practice shows that calculation using Rodrigue-Hamilton’s parameters provides the lowest computational efforts compared to other methods, when the same accuracy characteristics are provided.

The accuracy of the optical laser beacon localization depends on the accuracy of determining of the orbiter’s orientation according to the measurements of the star sensor, the on-board TV camera resolution and the altitude of the orbiter’s orbit. The correlation between the spacecraft orbital parameters and the mutual position of the optical laser beacon is achieved by equalizing of a large array of observations. The equalization method takes into account all measurement errors: from errors in determining of the on-board TV camera orientation to satellite’s orbit deviations caused by irregularities of the lunar gravity field.

The presented technique will allow to locate the position of the lunar landing station with an optical laser beacon onboard with an accuracy of units of meters.

Thus, the integrated use of the orbiter on-board equipment and the binding of its measurements to the World Time Scale allows to determine the selenographic coordinates of lunar terrain points in the LRS system. This will allow to use it as a reference point for establishing of a high-precision grid of selenodetic coordinates, and to bring mapping of the lunar surface to the accuracy corresponding to the detail images of the lunar relief.

Keywords:

spacecraft, optical beacon, lunar landing station, navigation

References

  1. Dmitriev A.L. Poluprovodnikovye istochniki sveta dlya sistem peredachi i obrabotki informatsii (Semiconductor light sources for the transmission and processing of information), Saint Petersburg, SPbGUITMO, 2006, 48 p.

  2. Bagrov A.V., Barabanov A.A., Vernigora L.V., Vyatlev P.A., Martynov M.B., Pichkhadze K.M., Sysoev V.K. Kosmicheskie issledovaniya, 2013, vol. 51, no. 4, pp. 1 – 9.

  3. Bagrov A.V., Vernigora L.V., Vyatlev P.A., Martynov M.B., Papchenko B.N., Sysoev V.K. Vestnik NPO im. S.A. Lavochkina, 2011, no. 4, pp. 37 – 43.

  4. Vernigora L.V., Pichkhadze K.M., Sysoev V.K. Trudy MAI, 2017, no. 95. URL: http://trudymai.ru/eng/published.php?ID=84553

  5. Shevchenko V.V., Pugacheva S.G., Novikov V.V., Kvaratskheliya O.I. Opticheskie i teplovye kharakteristiki poverkhnosti Luny (Optical and thermal characteristics of the lunar surface), Moscow, MSU, 2001, 150 p.

  6. Shirenin A.M., Mazurova E.M., Bagrov A.V. Kosmicheskie issledovaniya, 2016, vol. 54, no. 6, pp. 493 – 498.

  7. Bagrov A.V., Dmitriev A.O., Leonov V.A., Mit’kin A.S., Moskatin’ev I.V., Sysoev V.K., Shirshakov A.E. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=66381

  8. Chebotarev V.E., Kudymov V.I., Zvonar’ V.D., Vnukov A.A., Vladimirov A.V. Issledovaniya naukograda, 2014, no. 4, pp. 14 – 20.

  9. Korneev M.A., Maksimov A.N., Maksimov N.A. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33061

  10. Arias E.F., Charlot P., Feissel M., Lestrade J.-F. The Extragalactic Reference System of the International Earth Rotation Service, ICRS, Astronomy and Astrophysics, 1995, vol. 303, pp. 604 – 608.

  11. Lur’e A.I. Analiticheskaya mekhanika (Analytical mechanics), Moscow, Fizmatgiz, 1961, 824 p.

  12. Koshlyakov V.N. Parametry Rodriga–Gamil’tona i ikh prilozheniya v mekhanike tverdogo tela (Rodrigue–Hamilton parameters and their applications in solid mechanics), Kiev, Izd-vo Instituta matematiki NAN Ukrainy, 1994, 176 p.

  13. Branets V.N., Shmyglevskii I.P. Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Application of quaternions in rigid body orientation problems), Moscow, Nauka, 1973, 320 p.

  14. Shilov L.B. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29457

  15. Kovalevskii Zh. Sovremennaya astrometriya (Modern astrometry), Fryazino, Vek 2, 2004, 480 p.

  16. Efemeridy Laboratorii Reaktivnogo Dvizheniya: URL: http://ssd.jpl.nasa.gov/?ephemerides

  17. Vasil’ev N., Zelevinskii A. Kvant, 1982, no. 1, pp. 12 – 19.

  18. Archinal B.A. et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006, Celestial Mechanics and Dynamical Astronomy, 2007, vol. 98, issue 3, pp. 155 – 180.

  19. Prokhorov M.E., Zakharov A.I., Mironov A.V., Nikolaev F.N., Tuchin M.S. Trudy 38 mezhdunarodnoi studencheskoi nauchnoi konferentsii, Ekaterinburg, Izd-vo Ural’skogo universiteta, 2009, pp. 170 – 186.

  20. Dyatlov S.A., Bessonov R.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov», Tarusa, Institut kosmicheskikh issledovanii Rossiiskoi akademii nauk, 2009, pp. 11 – 32.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход